Magnetic Fe3O4@mTiO2-AIPA Microspheres for Separation of Phosphoproteins and Non-phosphoproteins

Qiuhan Tang , Rui Zhao , Qi Lu , Guangyan Qing

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 752 -759.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 752 -759. DOI: 10.1007/s11595-019-2113-z
Biomaterials

Magnetic Fe3O4@mTiO2-AIPA Microspheres for Separation of Phosphoproteins and Non-phosphoproteins

Author information +
History +
PDF

Abstract

A novel phosphoprotein separation material was developed, which is constructed by a magnetic mesoporous Fe3O4@TiO2 (Fe3O4@mTiO2) microsphere and a 5-aminoisophthalic acid (AIPA) monolayer that provides additional binding sites toward phosphate groups. The results of characteristic experiments demonstrated that Fe3O4@mTiO2-AIPA had good dispersability, high magnetic susceptibility, and satisfactory grafting ratio of AIPA, ascribed to the large specific surface area of the inorganic substrate. Taking advantages of these features, Fe3O4@mTiO2-AIPA was successfully utilized to separate α-casein (a typical phosphoprotein) and bovine serum albumin (BSA, a typical non-phosphoprotein) from their mixtures (molar ratio = 1:2). Through adjusting pH and polarity of solutions, the BSA and α-casein were respectively enriched in washing fraction and elution fraction. This result displays the good potential of Fe3O4@mTiO2-AIPA for application in phosphoprotein enrichment.

Keywords

magnetic microsphere / phosphoprotein / separation / α-casein

Cite this article

Download citation ▾
Qiuhan Tang, Rui Zhao, Qi Lu, Guangyan Qing. Magnetic Fe3O4@mTiO2-AIPA Microspheres for Separation of Phosphoproteins and Non-phosphoproteins. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(3): 752-759 DOI:10.1007/s11595-019-2113-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bannister AJ, Kouzarides T. Regulation of Chromatin by Histone Modifications[J]. Cell Res., 2011, 21(3): 381-395.

[2]

Grimsrud PA, Swaney DL, Wenger CD, et al. Phosphoproteomics for the Masses[J]. ACS Chem. Biol., 2010, 5(1): 105-119.

[3]

Graves JD, Krebs EG. Protein Phosphorylation and Signal Transduction[J]. Pharmacol. Ther., 1999, 82(2–3): 111-121.

[4]

Gong CX, Singh TJ, Grundke-Igbal I, et al. Alzheimer’s Disease Abnormally Phosphorylated τ Is Dephosphorylated by Protein Phosphatase-2B (Calcineurin)[J]. J. Neurochem., 1994, 62(2): 803-806.

[5]

Solari FA, Dell’Aica M, Sickmann A, et al. Why Phosphoproteomics Is Still a Challenge[J]. Mol. BioSyst., 2015, 11(6): 1 487-1 493.

[6]

Engholm-Keller K, Larsen MR. Technologies and Challenges in Large-Scale Phosphoproteomics[J]. Proteomics, 2013, 13(6): 910-931.

[7]

Hou J, Xie Z, Xue P, et al. Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix[J]. J. Biomed. Biotechnol., 2010: 759 690

[8]

Xiong Z, Chen Y, Zhang L, et al. Facile Synthesis of Guanidyl-Functionalized Magnetic Polymer Microspheres for Tunable and Specific Capture of Global Phosphopeptides or Only Multiphosphopeptides[J]. ACS Appl. Mater. Interfaces, 2014, 6(24): 22 743-22 750.

[9]

Wu S, Lourette NM, Tolic N, et al. An Integrated Top-Down and Bottom-Up Strategy for Broadly Characterizing Protein Isoforms and Modifications[J]. J. Proteome Res., 2009, 8(3): 1 347-1 357.

[10]

Chait BT. Mass Spectrometry: Bottom-Up or Top-Down?[J]. Science, 2006, 314(5796): 65-66.

[11]

Delom F, Chevet E. Phosphoprotein Analysis: from Proteins to Proteomes[J]. Proteome Sci., 2006, 4: 15.

[12]

Yates JR, Ruse CI, Nakorchevsky A. Proteomics by Mass Spectrometry: Approaches, Advances, and Applications[J]. Annu. Rev. Biomed. Eng., 2009, 11: 49-79.

[13]

Han X, Wang Y, Aslanian A, et al. Sheathless Capillary Electrophoresis-Tandem Mass Spectrometry for Top-Down Characterization of Pyrococcus Furiosus Proteins on a Proteome Scale[J]. Anal. Chem., 2014, 86(22): 11 006-11 012.

[14]

Siuti N, Kelleher NL. Decoding Protein Modifications Using Top-Down Mass Spectrometry[J]. Nat Methods., 2007, 4(10): 817-821.

[15]

Waanders LF, Hanke S, Mann M. Top-Down Quantitation and Characterization of SILAC-Labeled Proteins[J]. J. Am. Soc. Mass Spectrom., 2007, 18(11): 2 058-2 064.

[16]

Tran JC, Zamdborg L, Ahlf DR, et al. Mapping Intact Protein Isoforms in Discovery Mode Using Top-Down Proteomics[J]. Nature, 2011, 480(7376): 254-258.

[17]

Schmidt SR, Schweikart F, Andersson ME. Current Methods for Phosphoprotein Isolation and Enrichment[J]. J. Chromatogr. B, 2007, 849(1–2): 154-162.

[18]

Hwang L, Ayaz-Guner S, Gregorich ZR, et al. Specific Enrichment of Phosphoproteins Using Functionalized Multivalent Nanoparticles[J]. J. Am. Chem. Soc., 2015, 137(7): 2 432-2 243.

[19]

Liu H, Yang T, Dai J, et al. Hydrophilic Modification of Titania Nano-materials as a Biofunctional Adsorbent for Selective Enrichment of Phosphopeptides[J]. Analyst, 2015, 140(19): 6 652-6 659.

[20]

Yan YH, Zhang XM, Deng CH. Designed Synthesis of Titania Nanoparticles Coated Hierarchially Ordered Macro/Mesoporous Silica for Selective Enrichment of Phosphopeptides[J]. ACS Appl. Mater. Interfaces, 2014, 6(8): 5 467-5 471.

[21]

Li Y, Xu X, Qi D, et al. Novel Fe3O4@TiO2 Core-Shell Microspheres for Selective Enrichment of Phosphopeptides in Phosphoproteome Analysis[J]. J. Proteome Res., 2008, 7(6): 2 526-2 538.

[22]

Mann M, Ong SE, Gronborg M, et al. Analysis of Protein Phosphorylation Using Mass Spectrometry: Deciphering the Phosphoproteome[J]. Trends Biotechnol., 2002, 20(6): 261-268.

[23]

Tang J, Yin P, Lu X, et al. Development of Mesoporous TiO2 Microspheres with High Specific Surface Area for Selective Enrichment of Phosphopeptides by Mass Spectrometric Analysis[J]. J. Chromatogr. A, 2010, 1217(15): 2 197-2 205.

[24]

Qing G, Wang X, Jiang L, et al. Saccharide-Sensitive Wettability Switching on a Smart Polymer Surface[J]. Soft Matter., 2009, 5(14): 2 759-2 765.

[25]

Liu S, Kang J, Cao X, et al. Acylthiourea Derivatives as Colorimetric Sensors for Anions: Synthesis, Characterization and Spectral Behaviors[J]. Spectrochim. Acta, Part A, 2016, 153: 471-477.

[26]

Nishio T, Ayano E, Suzuki Y, et al. Separation of Phosphorylated Peptides Utilizing Dual pH- and Temperature-Responsive Chromatography[J]. J. Chromatogr. A, 2011, 1218(15): 2 079-2 084.

[27]

Lu L, Li W, Wang G, et al. Synthesis and Characterization of Biomimetic Fe3O4/Coke Magnetic Nanoparticles Composite Material[J]. J. Wuhan Univ. Technol., -Mater Sci. Ed., 2016, 31(2): 254-259.

[28]

Ren Q, Chu H, Chen M, et al. Design and Fabrication of Superparamaganitic Hybrid Microspheres for Protein Immobilization[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26(6): 1 084-1 088.

[29]

Chen CT, Chen YC. Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry[J]. Anal. Chem., 2005, 77(18): 5 912-5 919.

[30]

Deng H, Li X, Peng Q, et al. Monodisperse Magnetic Single-Crystal Ferrite Microspheres[J]. Angew. Chem. Int. Ed., 2005, 44(18): 2 782-2 785.

[31]

Wang P, Chen D, Tang FQ. Preparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis[J]. Langmuir, 2006, 22(10): 4 832-4 835.

[32]

Gelb LD, Gubbins KE. Characterization of Porous Glasses: Simulation Models, Adsorption Isotherms, and the Brunauer-Emmett-Teller Analysis Method[J]. Langmuir, 1998, 14(8): 2 097-2 111.

[33]

Ojeda ML, Esparza JM, Campero A, et al. On Comparing BJH and NLDFT Pore-Size Distributions Determined from N2 Sorption on SBA-15 Substrata[J]. Phys. Chem. Chem. Phys., 2003, 5(9): 1 859-1 866.

[34]

Xu H, Zhang Y, Niu X, et al. Preparation and in vitro Release Properties of Mercaptopurine Drug-loaded Magnetic Microspheres[J]. J. Wuhan Univ. Technol.,-Mater. Sci. Ed., 2013, 28(6): 1 231-1 235.

[35]

Li C, Younesi R, Cai Y, et al. Photocatalytic and Antibacterial Properties of Au-Decorated Fe3O4@mTiO2 Core-Shell Microspheres[J]. Appl. Catal., B, 2014, 156–157: 314-322.

[36]

Song H, Ma X, Xiong F, et al. Preparation and Evaluation of Insulin-Loaded Nanoparticles based on Hydroxypropyl-β-Cyclodextrin Modifed Carboxymethyl Chitosan for Oral Delivery[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31(6): 1 394-1 400.

[37]

Jin WH, Dai J, Li SJ, et al. Human Plasma Proteome Analysis by Multidimensional Chromatography Prefractionation and Linear Ion Trap Mass Spectrometry Identification[J]. J. Proteome Res., 2005, 4(2): 613-619.

[38]

Canas B, Pineiro C, Calvo E, et al. Trends in Sample Preparation for Classical and Second Generation Proteomics[J]. J. Chromatogr. A, 2007, 1(153): 235-258.

[39]

Wuhrer M, Deelder AM, Hokke CH. Protein Glycosylation Analysis by Liquid Chromatography-Mass Spectrometry[J]. J. Chromatogr. B, 2005, 825(2): 124-133.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/