Assessment of Toxicity of BSA-conjugated Zinc Oxide Quantum Dots for C2C12 Cells

Zhi Chen , Baohong Li , Bodan Zheng , Xiaowei Xing , Dudu Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 736 -743.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 736 -743. DOI: 10.1007/s11595-019-2111-1
Biomaterials

Assessment of Toxicity of BSA-conjugated Zinc Oxide Quantum Dots for C2C12 Cells

Author information +
History +
PDF

Abstract

Colloidal semiconductor nanoparticles (quantum dots, QDs) have attracted a lot of interests in numerous biological and medical applications due to their potent fluorescent properties. However, the possible toxic effects of quantum dots remain an issue of debate. In this study, we aimed to evaluate the cytocompatibility of bovine serum albumin (BSA) conjugated zinc oxide QDs for C2C12 cells. In the experiment, ZnO QDs were synthesized by using BSA as the structure directing agent, and the morphology and crystal phase of ZnO QDs were determined by transmission electron microscopy, X-ray diffractograms and Fourier transform infrared spectrograph techniques. The inverted fluorescence microscope results showed that ZnO QDs were distributed inside the cells. The toxicity of ZnO QDs was assessed by MTT methods, which revealed that ZnO QDs were highly cytocompatible in the concentration less than 200 µM. However, when the concentration of QDs was higher than 1 000 µM ZnO QDs showed significantly toxicity, which was ascribed to generation of free zinc and formation of reactive oxygen species (ROS). Furthermore, the morphological observations exhibited that cells treated with ZnO QDs showed altered morphology, depolymerized cytoskeleton and irregular-shaped nuclei. This study provides helpful guidances on the future safe use and manipulation of QDs to make them suitable tools in nanomedicine.

Keywords

zinc oxide / bovine serum albumin / quantum dots / toxicity / cells

Cite this article

Download citation ▾
Zhi Chen, Baohong Li, Bodan Zheng, Xiaowei Xing, Dudu Wu. Assessment of Toxicity of BSA-conjugated Zinc Oxide Quantum Dots for C2C12 Cells. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(3): 736-743 DOI:10.1007/s11595-019-2111-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rettberg P, Kloss M, Barczyk S, et al. Organic-inorganic Sol-gel Composites Incorporating Emiconductor Nanocrystals for Optical Gain Applications[J]. Adv. Mater., 2009, 21(17): 1 716-1720.

[2]

Medintz I L, Uyeda H T, Goldman E R, et al. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing[J]. Nat.Mater., 2005, 4(6): 435-446.

[3]

Mattoussi H, Mauro J M, Goldman E R, et al. Self-assembly of CdSe-Zns Quantum Dot Bioconjugates Using an Engineered Recombinant Protein[J]. J. Am. Chem. Soc., 2000, 122(49): 12 142-12 150.

[4]

Mobarraz M, Chaichi M J, Ganjali M R, et al. Functionalized ZnS Quantum Dots as Luminescent Probes for Detection of Amino Acids. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2012, 96: 801-804.

[5]

Zhang Q, Song C, Zhao T, et al. Photoluminescent Sensing for Acidic Amino Acids Based on the Disruption of Graphene Quantum Dots/Europium Ions Aggregates[J]. Biosens. Bioelectron., 2015, 65: 204-210.

[6]

Huang X, Li L, Qian H, et al. A Resonance Energy Transfer Between Chemiluminescent Donors and Luminescent Quantum-Dots as Acceptors (Cret)[J]. Angew. Chem. Int. Ed. Engl., 2006, 45(31): 5 140-5 143.

[7]

Ghrera A S, Pandey M K, Malhotra B D. Quantum Dot Monolayer for Surface Plasmon Resonance Signal Enhancement and DNA Hybridization Detection[J]. Biosens. Bioelectron, 2016, 80: 477-482.

[8]

Nguyen K C, Rippstein P, Tayabali A F, et al. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes[J]. Toxicol. Sci., 2015, 146(1): 31-42.

[9]

Mahto S K, Yoon T H, Rhee S W. A New Perspective on in Vitro Assessment Method for Evaluating Quantum Dot Toxicity by Using Microfluidics Technology[J]. Biomicrofluidics, 2010, 4(3): 727-731.

[10]

Rzigalinski B A, Strobl J S. Cadmium-Containing Nanoparticles: Perspectives on Pharmacology and Toxicology of Quantum Dots[J]. Toxicol. Appl. Pharm., 2009, 238(3): 280-288.

[11]

Hoshino A, Fujioka K, Oku T, et al. Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on their Surface Modification[J]. Nano. Lett., 2014, 4(11): 2 163-2 169.

[12]

Lovrić J, Bazzi H S, Cuie Y, et al. Differences in Subcellular Distribution and Toxicity of Green and Red Emitting CdTe Quantum Dots[J]. J. Mol. Med., 2005, 83(5): 377-385.

[13]

Chang E, Yu W W, Colvin V L, et al. Quantifying the Influence of Surface Coatings on Quantum Dot Uptake in Cells[J]. J. Biomed. Nanotechnol., 2005, 1(4): 397-401.

[14]

Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-Term Multiple Color Imaging of Live Cells Using Quantum Dot Bioconjugates[J]. Nat. Biotechnol., 2002, 21(1): 47-51.

[15]

Chan W C, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Non-isotopic Detection[J]. Science, 1998, 281(5385): 2 016-2 018.

[16]

Fu R P, Sun F F, Chen K Z. Preparation and Fluorescent Property of ZnO Nanoparticles[. Journal of Functional Materials, 2007, 38: 2 076-2 078.

[17]

Zhu Z M, Chen T L, Gu Y, et al. Zinc Oxide Nanowires Grown by Vapor-phase Transport Using Selected Metal Catalysts: Acomparative Study[J]. Chem. Mater., 2005, 17(16): 4 227-4 234.

[18]

Li M, Zhai J, Liu H, et al. Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films[J]. J. Phys. Chem. B, 2003, 107(37): 9 954-9 957.

[19]

Li M, Si X J. Research Progress on Preparation and Application of Zinc Oxide[J]. Guangzhou Chemical Industry and Technology, 2010, 1: 51-53.

[20]

Cao Y, Wang HJ, Cao C, et al. Synthesis and Anti-ultraviolet Properties of Monodisperse BSA-conjugated Zinc Oxide Nanoparticles[J]. Mater. Lett., 2011, 66: 340-34.

[21]

Wang H, Joseph J A. Quantifying Cellular Oxidative Stress by Dichlorofluorescein Assay Using Microplate Reader[J]. Free Radical. Bio. Med., 1999, 27: 612-616.

[22]

An X L, Li Q Z, Liu H P, et al. FT-IR Study of the Interaction between Bovine Serum Albumins and Cetyltrimethyl Ammonium Bromide[J]. Journal of Southwest China Normal University (Natural Science), 2005, 30: 699-702.

[23]

Ye Q, Hu R, Lin Z Y, et al. In situ ATR-FTIR Study on the Interaction of HA with Bovine Serum Albumin[J]. Chem. Res. Chinese U., 2006, 27: 1 552-1 554.

[24]

Zhuang J, Chi Y H, Liu M. Preparation and Optic Properties of Water-Soluble Zno Quantum Dots[J]. Chem. J. Chinese U., 2007, 28(12): 2 246-2 251.

[25]

Liu M, Zhang J, Chi Y H. Preparation and Luminescence Properties of Zno Quantum-Dots Capped with SiO2 in Dilute Water-Free Solution[J]. Chinese J. Inorg. Chem., 2006, 22(4): 651-655.

[26]

Stohs S J, Bagchi D, Hassoun E, et al. Oxidative Mechanisms in the Toxicity of Chromium and Cadmium Ions[J]. J. Environ. Pathol. Tox., 2001, 20(2): 77-88.

[27]

Wim W, Beyersmann D. Cadmium-Induced Apoptosis in C6 Glioma Cells: Influence of Oxidative Stress[J]. Biometals, 2004, 17(1): 65-78.

[28]

Xu H, Qu F, Xu H, et al. Role of Reactive Oxygen Species in the Antibacterial Mechanism of Silver Nanoparticles on Escherichia Coli, O157:H7[J]. Biometals, 2012, 25(1): 45-53.

[29]

Choi A O, Brown S E, Szyf M, et al. Quantum Dot-Induced Epigenetic and Genotoxic Changes in Human Breast Cancer Cells[J]. J. Mol. Med., 2008, 86(3): 291-302.

[30]

Mahto S K, Park C, Yoon T H, et al. Assessment of Cytocompatibility of Surface-Modified Cdse/Znse Quantum Dots for Balb/3t3 Fibroblast Cells[J]. Toxicol. in Vitro, 2010, 24(4): 1 070-1 077.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/