Microstructure and Solid/Liquid Interface Evolutions of Directionally Solidified Fe-Al-Ta Eutectic Alloy

Chunjuan Cui , Songyuan Wang , Meng Yang , Haijun Su , Yagang Wen , Pei Wang , Chiqiang Ren

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 656 -661.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 656 -661. DOI: 10.1007/s11595-019-2100-4
Metallic Materials

Microstructure and Solid/Liquid Interface Evolutions of Directionally Solidified Fe-Al-Ta Eutectic Alloy

Author information +
History +
PDF

Abstract

A modified Bridgman directional solidification technique was used to prepare Fe-Al-Ta eutectic in situ composites at different growth rates ranging from 6 to 80 µm/s. The directionally solidified Fe-Al-Ta eutectic composites are composed of two phases: Fe(Al,Ta) matrix phase, and Fe2Ta(Al) Laves phase. Solidification microstructure is affected by solidification rate. Microstructure of the Fe-Al-Ta eutectic alloy grown at 6.0 µm/s is broken-lamellar eutectic. Eutectic colonies are formed with the increase of the solidification rate. Microstructures are mainly composed of the lamellar or fibrous eutectic at the center of the colony and coarse lamellar eutectic zone at the boundary. Meanwhile, the inter-lamellar spacing (or the inter-rod spacing) is decreased. The spacing adjustments are also observed in Fe-Al-Ta eutectic alloy. The solid/liquid interface evolves from planar interface to shallow cellular interface, then to deep cellular, and finally to shallow cellular planar with the increase of the solidification rate.

Keywords

directional solidification / solidification rate / eutectic alloy / solid/liquid interface

Cite this article

Download citation ▾
Chunjuan Cui, Songyuan Wang, Meng Yang, Haijun Su, Yagang Wen, Pei Wang, Chiqiang Ren. Microstructure and Solid/Liquid Interface Evolutions of Directionally Solidified Fe-Al-Ta Eutectic Alloy. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(3): 656-661 DOI:10.1007/s11595-019-2100-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cinca N, Lima C R C, Guilemany J M. An Overview of Intermetallics Research and Application: Status of Thermal Spray Coatings[J]. Journal of Materials Research and Technology, 2013, 2(1): 75-86.

[2]

Zhou R F, Han Y F, Li S H. High Temperature Structure MateriaIs[M], 2006 Beijing: National Defence Industry Press.

[3]

Guo J T, Zhou L Z, Yuan C, et al. The Microstructure and Mechanical Properties of Several Kinds of Original and Unique High Temperature Alloys[J]. Transactions of Non-ferrous Metals Society of China, 2011, 21(2): 237-250.

[4]

Hotař A, Kejzlar P, Palm M, et al. The Effect of Zr on High-Temperature Oxidation Behaviour of Fe3Al-based Alloys[J]. Corrosion Science, 2015, 100: 147-157.

[5]

Hotař A, Palm M, Kratochvíl P, et al. High-temperature Oxidation Behaviour of Zr Alloyed Fe3Al-type Iron Aluminide[J]. Corrosion Science, 2012, 63: 71-81.

[6]

Risanti D D, Sauthoff G. Microstructures and Mechanical Properties of Fe-Al-Ta Alloys with Strengthening Laves Phase[J]. Intermetallics, 2011, 19: 1 727-1 736.

[7]

Farrokhi A, Samadi A, Asadabad M A, et al. Characterization of Mechanically Alloyed Nano Structured Fe3Al Intermetallic Compound by X-ray Diffractometry[J]. Advanced Powder Technology, 2015, 26(3): 797-801.

[8]

Janda D, Fietzek H, Galetz M, et al. The Effect of Micro-alloying with Zr and Nb on the Oxidation Behavior of Fe3Al and FeAl Alloys[J]. Intermetallics, 2013, 41: 51-57.

[9]

Zamanzade M, Vehoff H, Barnoush A. Effect of Chromium on Elastic and Plastic Deformation of Fe3Al Intermetallics[J]. Intermetallics, 2013, 41: 28-34.

[10]

Tapsuan T, Niyomwas S. Effect of Preform Conditions on Synthesis of Fe3Al-TiB2-Al2O3 Composite by Self-propagating High-temperature Synthesis[J]. Procedia Engineering, 2012, 32: 635-641.

[11]

Hasemann G, Schneibel J H, George E P. Dependence of the Yield Stress of Fe3Al on Heat Treatment[J]. Intermetallics, 2012, 21(1): 56-61.

[12]

Xiao Z X, Zheng L J, Wang L, et al. Microstructure Evolution of Ti-47Al-2Cr-2Nb Alloy in the Liquid-Metal-Cooling (LMC) Directional-solidification Process[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(2): 197-201.

[13]

Reviere R, Sauthoff G, Johnson D R, et al. Microstructure of Directionally Solidified Eutectic Based Fe(Al,Ta)/Fe2Ta(Al) Alloys as a Function of Processing Conditions[J]. Intermetallics, 1997, 5: 161-172.

[14]

Goulart P R, Cruz K S, Spinelli J E, et al. Cellular Growth during Transient Directional Solidification of Hypoeutectic Al-Fe Alloys[J]. Journal of Alloys and Compounds, 2009, 470: 589-599.

[15]

Milenkovic S, Palm M. Microstructure and Mechanical Properties of Directionally Solidified Fe-Al-Nb Eutectic[J]. Intermetallics, 2008, 16: 1 212-1 218.

[16]

Mota M A, Coelho A A, Bejarano JMZ, et al. Fe-Al-Nb Phase Diagram Investigation and Directional Growth of the (Fe,Al)2Nb-(Fe,Al,Nb)ss Eutectic System[J]. Journal of Alloys and Compounds, 2005, 399: 196-201.

[17]

Tiller W A. Liquid Metals and Solidification[M], 1958 Cleveland: Amer. Soc. Metal.

[18]

Liu S, Lee J H, Trivedi. Dynamic Effects in the Lamellar-rod Eutectic Transition[J]. Acta Materialia, 2011, 59(8): 3 102-3 115.

[19]

Jackson K A, Hunt J D. Lamellar and Rod Eutectic Growth[M], 1996 New York: Trans. Met. Soc. Aime.

[20]

Hunt J D. The Lamella-rod Transformation in Eutectics[J]. Journal of the Institute of Metals, 1966 2 348-2 351.

[21]

Hunt J D, Jackson K A. Binary Eutectic SoIidification[M], 1966 New York: Transact. Aime.

[22]

Pelcé P, Rochwerger D, Karma A. Oscillatory Instability and Minimum Undercooling Criterion in Directional Solidification[J]. Journal of Crystal Growth, 1991, 110(4): 815-822.

[23]

Liu G H, Wang Z D, Li X Z, et al. Continued Growth Controlling of the Non-preferred Primary Phase for the Parallel Lamellar Structure in Directionally Solidified Ti-50Al-4Nb Alloy[J]. Journal of Alloys and Compounds, 2015, 632: 152-160.

[24]

Cui C J, Zhang J, Xue T, et al. Effect of Solidification Rate on Micro-structure and Solid/Liquid Interface Morphology of Ni-11.5 wt%Si Eutectic Alloy[J]. Journal of Materials Science & Technology, 2015, 31(3): 280-284.

[25]

Jacot A, Sumida M, Kurz W. Solute Trapping-free Massive Transformation at Absolute Stability[J]. Acta Materialia, 2011, 59: 1 716-1 724.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/