Influence of Replacement Level of Coal-series Kaolin on Hydration of Ordinary Portland Cement by X-ray Diffraction/Rietveld Method

Yuanyuan Liu , Shaomin Lei , Yang Li , Feixiang Xie , Bo Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 614 -621.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 614 -621. DOI: 10.1007/s11595-019-2095-x
Cementitious Materials

Influence of Replacement Level of Coal-series Kaolin on Hydration of Ordinary Portland Cement by X-ray Diffraction/Rietveld Method

Author information +
History +
PDF

Abstract

The influence of replacement level of calcined coal-series kaolin (CCK) on hydration of ordinary Portland cement (OPC) was studied by X-ray diffraction(XRD)/Rietveld method. X-ray diffraction/Rietveld method was used to quantify the crystalline phase composition of the hydrated samples. Additionally, the morphology of hydrated samples was observed by scanning electron microscopy (SEM). The results showed that, calcium hydroxide (CH), ettringite (AFt) and amorphous phase content in hydrated samples decreased as the replacement level of CCK increased, while AFm and strätlingite increased, which was caused by the combination of dilute, physical and pozzolanic effects. The hydration of anhydrous cement phases was accelerated by physical effect but hindered by the retardation effect of CCK. The role of each effects was discussed in detail to analyze the mechanism of OPC hydration with CCK addition. The SEM images showed that the shortening of AFt at 1 day and the denser texture at 28 days was observed with CCK addition, which was caused by the physical and pozzolanic effects, respectively.

Keywords

calcined coal-series kaolin / X-ray diffraction/rietveld method / hydration / cement paste / morphology

Cite this article

Download citation ▾
Yuanyuan Liu, Shaomin Lei, Yang Li, Feixiang Xie, Bo Li. Influence of Replacement Level of Coal-series Kaolin on Hydration of Ordinary Portland Cement by X-ray Diffraction/Rietveld Method. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(3): 614-621 DOI:10.1007/s11595-019-2095-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jansen D, Goetz-Neunhoeffer F, Stabler C, et al. A Remastered External Standard Method Applied to the Quantification of Early OPC Hydration[J]. Cem. Concr. Res., 2011, 41: 602-608.

[2]

Guirado F, Galí S, Chinchón S. Quantitative Rietveld Analysis of Aluminous Cement Clinker Phases[J]. Cem. Concr Res., 2000, 30: 1 023-1 029.

[3]

Bish DL, Howard SA. Quantitative Phase Analysis Using the Rietveld Method[J]. J. Appl. Cryst., 1988, 21: 86-91.

[4]

Snellings R, Bazzoni A, Scrivener K. The Existence of Amorphous Phase in Portland Cements: Physical Factors Affecting Rietveld Quantitative Phase Analysis[J]. Cem. Concr Res., 2014, 59: 139-146.

[5]

áLvarez-Pinazo G, Cuesta A, GarcíA-Maté M, et al. Rietveld Quantitative Phase Analysis of Yeelimite-containing Cements[J]. Cem. Concr. Res., 2012, 42: 960-971.

[6]

Scrivener KL, FüLlmann T, Gallucci E, et al. Quantitative Study of Portland Cement Hydration by X-ray Diffraction/Rietveld Analysis and Independent Methods[J]. Cem. Concr Res., 2004, 34: 1 541-1 547.

[7]

Wild S, Khatib JM, Jones A. Relative Strength, Pozzolanic Activity and Cement Hydration in Superplasticised Metakaolin Concrete[J]. Cem. Concr. Res., 1996, 26: 1 537-1 544.

[8]

Sabir BB, Wild S, Bai J. Metakaolin and Calcined Clays as Pozzolans for Concrete: a Review. Cem. Concr Compos., 2001, 23: 441-454.

[9]

Cyr M, Lawrence P, Ringot E. Efficiency of Mineral Admixtures in Mortars: Quantification of the Physical and Chemical Effects of Fine Admixtures in Relation with Compressive Strength[J]. Cem. Concr. Res., 2006, 36: 264-277.

[10]

Liu Y, Lei S, Lin M, et al. Assessment of Pozzolanic Activity of Calcined Coal-series Kaolin[J]. Appl. Clay Sci., 2017, 143: 159-167.

[11]

Young RA, Wiles DB. Profile Shape Functions in Rietveld Refinements[J]. J. Appl. Cryst., 1982, 15: 430-438.

[12]

Wiles DB, Young RA. A New Computer Program for Rietveld Analysis of X-ray Powder Diffraction Patterns[J]. J. Appl. Cryst., 1981, 14: 149-151.

[13]

De La Torre AG, Bruque S, Campo J, et al. The Superstructure of C3S from Synchrotron and Neutron Powder Diffraction and Its Role in Quantitative Analysis[J]. Cem. Concr Res., 2002, 32: 1 347-1 356.

[14]

Jost KH, Ziemer B, Seydel R. Redetermination of the Structure of β-Dicalcium Silicate[J]. Acta Crystallogr. B, 1977, 33: 1 696-1 700.

[15]

Colville AA, Geller S. The Crystal Structure of Brownmillerite, Ca2Fe-AlO5[J]. Acta Crystallogr. B, 1971, 27: 2 311-2 315.

[16]

Mondal P, Jeffery JW. The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6[J]. Acta Crystallogr. B, 1975, 31: 689-697.

[17]

De La Torre AG, Lopez-Olmo M-G, Alvarez-Rua C, et al. Structure and Microstructure of Gypsum and Its Relevance to Rietveld Quantitative Phase Analyses[J]. Powder Diffr., 2004, 19: 240-246.

[18]

Wartchow R. Datensammlung Nach der “Learnt Profile”-Methode(LP) Fur Calcit und Vergleich Mit der “Background Peak Background”-Methode (BPB). Zeit. Kristall., 1989, 186: 300-302.

[19]

Jorgensen JD. Compression Mechanisms in Alpha-quartz Structures-SiO2 and GeO2[J]. J. Appl. Phys., 1978, 49: 5 473-5 478.

[20]

Goetz-Neunhoeffer F, Neubauer J. Refined Ettringite Structure for Quantitative X-ray Diffraction Analysis[J]. Powder Diffr., 2006, 21: 4-10.

[21]

Allmann R. Refinement of the Hybrid Layer Structure (Ca2Al(OH)6)+ (0.5SO4•3H2O)-[J]. Neues Jahrb. Mineral. Monatsh., 1977, 3: 136-144.

[22]

Busing WR, Levy HA. Neutron Diffraction Study of Calcium Hydroxide[J]. J. Chem. Phys., 1957, 26: 563-568.

[23]

Rinaldi R, Sacerdoti M. Strätlingite: Crystal Structure, Chemistry, and a Reexamination of Its Polytype Vertumnite[J]. Eur. J. Mineral., 1990, 2(6): 841-849.

[24]

Taylor D. Thermal Expansion Data. I. Binary Oxides with the Sodium Chloride and Wurtzite Structure, MO[J]. Trans. J. Brit. Ceram. Soc., 1984, 83: 5-9.

[25]

Albertsson J, Abrahams SC, Kvick A. Atomic Displacement, Anharmonic Thermal Vibration, Expansivity and Pyroelectric Coefficient Thermal Dependences in ZnO[J]. Acta Crystallogr. B, 1989, 45: 34-40.

[26]

Badogiannis E, Kakali G, Dimopoulou G, et al. Metakaolin as a Main Cement Constituent. Exploitation of Poor Greek Kaolins[J]. Cem. Concr. Compos., 2005, 27: 197-203.

[27]

AQSIQ, SAC. Quantitative Determination of Constituents of Cement[S]. GB/T 12960–2007, 2007

[28]

Murat M. Hydration Reaction and Hardening of Calcined Clays and Related Minerals. I. Preliminary Investigation on Metakaolinite[J]. Cem. Concr. Res., 1983, 13: 259-266.

[29]

Wang X, Lee H. Modeling the Hydration of Concrete Incorporating Fly Ash or Slag[J]. Cem. Concr. Res., 2010, 40: 984-996.

[30]

Han J, Wang K, Shi J, et al. Influence of Sodium Aluminate on Cement Hydration and Concrete Properties[J]. Constr. Build. Mater., 2014, 64: 342-349.

[31]

Habert G, Choupay N, Escadeillas G, et al. Clay Content of Argillites: Influence on Cement Based Mortars[J]. Appl. Clay Sci., 2009, 43: 322-330.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/