Facile Preparation of Al2O3 Hollow Microspheres Via a Urea-mediated Precipitation Process

Dong Xu , Hongyi Jiang , Ming Li , Xuecheng Dong , Ting Luo

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 579 -586.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 579 -586. DOI: 10.1007/s11595-019-2091-1
Advanced Materials

Facile Preparation of Al2O3 Hollow Microspheres Via a Urea-mediated Precipitation Process

Author information +
History +
PDF

Abstract

Al2O3 hollow microspheres without noticeable aggregation have been prepared via a facile templating route with urea-mediated precipitation. The precipitation process is different from the surface-adsorption method which is confined to the adsorption capacity of the template surface. TEM and SEM images indicate that most of these Al2O3 hollow microspheres with shell thickness of tens of nanometers and diameters in a narrow range of 100–200 nm consist of a shell of closely packed nanoparticles. The optimal amount of H2O and EtOH are 40 and 120 mL, respectively. The specific surface area, average pore size and pore volume of the Al2O3 hollow microspheres (calcinated at 600 °C) are 328.52 m2/g, 17.496 nm and 1.985 cm3/g, respectively. As the calcination temperature increases from 600 to 1 100 °C, the phase composition changes from γ-Al2O3 to θ-Al2O3 and α-Al2O3, and the surface morphology appears to change from a relatively rough surface formed by nanoparticles to a smooth surface formed by lamellar, which lead to the closure of pore channels and the reduction of specific surface.

Keywords

Al2O3 hollow microspheres / precipitation / nanoparticles / specific surface area

Cite this article

Download citation ▾
Dong Xu, Hongyi Jiang, Ming Li, Xuecheng Dong, Ting Luo. Facile Preparation of Al2O3 Hollow Microspheres Via a Urea-mediated Precipitation Process. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(3): 579-586 DOI:10.1007/s11595-019-2091-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sakanishi K, Hasuo H, Mochida I, et al. Preparation of Highly Dispersed NiMo Catalysts Supported on Carbon Black Particles of Hollow Spheres[J]. Energy Fuels, 1995, 995(9): 377-382.

[2]

Liu B, Zhang W, Zhang QY, et al. Facile Method for Synthesis of Hollow Porous Magnetic Microspheres with Controllable Structure[J]. J. Colloid Interf. Science, 2012, 375(1): 70-77.

[3]

Qiu Q Q, Ducheyne P, Ayyaswamy P S, et al. Characterization and Evaluation of Bioceramic Hollow Microspheres used as Microcarriers for 3-D Bone Tissue Formation in Rotating Bioreactors[J]. Biomaterials, 1999, 20(11): 989-1 001.

[4]

Nahar R K, Khanna V K. Ionic Doping and Inversion of the Characteristic of Thin Film Porous Al2O3 Humidity Sensor[J]. Sens. Actuators, B: Chem., 1998, 46(1): 35-41.

[5]

Jia TK, Wang XF, Wang WM, et al. Facile Synthesis of SnO2 Hollow Microspheres and Their Optical Property [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(2): 302-305.

[6]

Kim SS, Kim ST, Ahn JM, et al. Magnetic and Microwave Absorbing Properties of Co-Fe Thin Films Plated on Hollow Ceramic Micro-spheres of Low Density[J]. J. Magn. Magn. Mater., 2004, 271(1): 39-45.

[7]

Sodeyama K, Sakka Y, Kamino Y, et al. Preparation of Fine Expanded Perlite[J]. J. Mater. Sci., 1999, 34(10): 2 461-2 468.

[8]

Jada SS. Preparation of Hollow Zircon (ZrSiO4) Microspheres by The Spray-Pyrolysis Method[J]. J. Mater. Sci. Lett., 1990, 9(5): 565-568.

[9]

Madler L, Pratsinis SE. Bismuth Oxide Nanoparticles by Flame Spray Pyrolysis[J]. J. Am. Ceram. Soc., 2002, 85(7): 1 713-1 718.

[10]

Park JH, Oh C, Shin SI, et al. Preparation of Hollow Silica Microspheres in W/O Emulsions with Polymers[J]. J. Colloid Interface Sci., 2003, 266(1): 107-114.

[11]

Cai XD, Wang JJ, Li BC, et al. Preparation of Amorphous LiZn Ferrites Hollow Microspheres by Self-reactive Quenching Technology [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32(4): 812-815.

[12]

Zhou JB, Cheng Y, Yu JG, et al. Hierarchically Porous Calcined Lithium/Aluminum Layered Double Hydroxides: Facile Synthesis and Enhanced Adsorption Towards Fluoride in Water[J]. J. Mater. Chem., 2011, 21(48): 19 353-19 361.

[13]

Sadjadi S, Shiri S, Hekmatshoar R, et al. Nanocrystalline Aluminium Oxide: A Mild and Efficient Reusable Catalyst for The One-pot Synthesis of Poly-substituted Quinolones via Friedlander Hetero-annulation[J]. Monatshefte für Chemie-Chemical Monthly, 2009, 140(11): 1 343-1 347.

[14]

Patel T, Supratim S, Bhattacharya D, et al. Transparent and Thermally Conductive Polycarbonate (PC)/Alumina (Al2O3) Nanocomposites: Preparation and Characterizations[J]. Polym.-Plast. Technol., 2013, 52(15): 1 557-1 565.

[15]

Yi JH, Sun YY, Gao JF, et al. Synthesis of Crystalline γ-Al2O3 with High Purity[J]. Trans. Nonferrous Met. Soc., 2009, 19(5): 1 237-1 242.

[16]

Palcheva R, Kaluzˇa L, Spojakina A, et al. NiMo/γ-Al2O3 Catalysts from Ni Heteropolyoxomolybdate and Effect of Alumina Modification by B Co, or Ni[J]. Chin. J. Catal., 2012, 33(6): 952-961.

[17]

Xu N, Dai JH, Tian JT, et al. Synthesis of Hollow Glass-ceramics Microspheres via Template Method[J]. Mater. Res. Bull., 2011, 46(1): 92-97.

[18]

Hu YJ, Ding HQ, Li CZ. Preparation of Hollow Alumina Nanospheres via Surfactant-assisted Flame Spray Pyrolysis[J]. Particuology, 2011, 9(5): 528-532.

[19]

Wu XY, Zhang BQ, Hu ZS. Microwave Hydrothermal Synthesis of Boehmite Hollow Microspheres[J]. Mater. Lett., 2012, 73(73): 169-171.

[20]

Cho YH, Kang YC, Lee JH. Highly Selective and Sensitive Detection of Trimethylamine using WO3 Hollow Spheres Prepared by Ultrasonic Spray Pyrolysis[J]. Sens. Actuators B-Chem., 2013, 176(6): 971-977.

[21]

Xia YD, Mokaya R. Hollow Spheres of Crystalline Porous Metal Oxides: A Generalized Synthesis Route via Nanocasting with Mesoporous Carbon Hollow Shells[J]. J. Mater. Chem., 2005, 15(30): 3126-3131.

[22]

Sun XM, Li YD. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles[J]. Angew. Chem. Int. Ed., 2004, 43(5): 597-601.

[23]

Sing KS, Everett DH, Haul RAW, et al. Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity[J]. Pure Appl. Chem., 1985, 57(4): 603-619.

[24]

Li GH, Wang WZ, Long T, et al. A General and Facile Method to Prepare Uniform Gamma-Alumina Hollow Microspheres from Waste Oil Shale Ash[J]. Mater. Lett., 2014, 133(4): 143-146.

[25]

Chervin CN, Clapsaddle BJ, Chiu HW, et al. Role of Cyclic Ether and Solvent in a Non-Alkoxide Sol-Gel Synthesis of Yttria-Stabilized Zirconia Nanoparticles[J]. Chem. Mater., 2006, 18(20): 4 865-4 874.

[26]

Yu JG, Su YR, Cheng B. Template-Free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/Mesoporous Titania[J]. Adv. Funct. Mater., 2007, 17(12): 1 984-1 990.

[27]

Zhou JB, Cheng Y, Yu JG. Preparation and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanocomposite Thin Film[J]. J. Photochem. Photobio. A, 2011, 223(2): 82-87.

[28]

Wu LA, Qiao XS, Cui S, et al. Synthesis of Monolithic Aerogel-like Alumina via The Accumulation of Mesoporous Hollow Microspheres[J]. Microporous Mesoporous Mater., 2015, 202(5): 234-240.

AI Summary AI Mindmap
PDF

249

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/