Resistance Switching Behaviour and Properties of Ag/La0.5Mg0.5MnO3/p+-Si with Different Thicknesses of Resistance Films Fabricated through Sol—Gel Method

Shuaishuai Yan , Hua Wang , Jiwen Xu , Ling Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 568 -571.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 568 -571. DOI: 10.1007/s11595-019-2089-8
Advanced Materials

Resistance Switching Behaviour and Properties of Ag/La0.5Mg0.5MnO3/p+-Si with Different Thicknesses of Resistance Films Fabricated through Sol—Gel Method

Author information +
History +
PDF

Abstract

Ag/La0.5Mg0.5MnO3/p+-Si resistance switching device for nonvolatile memory application was fabricated by sol-gel method. The thickness effects of La0.5Mg0.5MnO3 (LMMO) films on current-voltage (I–V) characteristics, resistance switching behaviour and endurance characteristics of Ag/LMMO/p+-Si device were investigated. The same crystallisation and phase structure were confirmed in the LMMO films with increased film thickness. The Ag/LMMO/p+-Si device exhibits the typical bipolar resistive switching behaviour. As the LMMO thickness and the stable repetition switching cycle numbers increase, V Set, and V Reset of the device will increase, but the R HRS/R LRS will decrease. The Ag/LMMO/p+-Si device with 165 nm thick LMMO films exhibit the best performance, in which the R HRS/R LRS exceeds 104 for 1 000 switching cycles, and its degradation is invisible for more than 106 s.

Keywords

La0.5Mg0.5MnO3 / thickness / RRAM / sol-gel

Cite this article

Download citation ▾
Shuaishuai Yan, Hua Wang, Jiwen Xu, Ling Yang. Resistance Switching Behaviour and Properties of Ag/La0.5Mg0.5MnO3/p+-Si with Different Thicknesses of Resistance Films Fabricated through Sol—Gel Method. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(3): 568-571 DOI:10.1007/s11595-019-2089-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang YC, Pan F, Liu Q, et al. Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-density Memory Application[J]. Nano Lett., 2009, 9(4): 1 636-1 643.

[2]

Torrezan AC, Strachan JP, Medeirosribeiro G, et al. Sub-nanosecond Switching of A Tantalum Oxide Memristor[J]. Nanotechnology, 2011, 22(48): 485 203-485 209.

[3]

Choi BJ, Torrezan AC, Norris KJ, et al. Electrical Performance and Scalability of Pt Dispersed SiO2 Nanometallic Resistance Switch[J]. Nano Lett., 2013, 13(7): 3 213-3 217.

[4]

Lee MJ, Chang BL, Lee D, et al. A Fast, High-endurance and Scalable Non-volatile Memory Device Made from Asymmetric Ta2O5−x/TaO2−x Bilayer Structures[J]. Nat. Mater., 2011, 10(8): 625-630.

[5]

Wang Y, Jia S, Gan XW. Resistive RAM: A Novel Generation Memory Technology[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(3): 565-572.

[6]

Son JY, Shin YH. Direct Observation of Conducting on Resistance Switching of NiO Thin Films[J]. Appl. Phys. Lett., 2008, 92: 222 106-1–3.

[7]

Lv HB, Yin M, Song YL. Forming Process Investigation of Cu xO Memory Films[J]. IEEE. Electron Device Lett., 2008, 29: 47-49.

[8]

Sun BC, Wang H, Xu JW, et al. Effect of Annealing Temperature on Resistance Switching and Dielectric Characteristics of Bi4Ti3O12 Thin Films[J]. Microelectron. Eng., 2014, 113: 1-4.

[9]

Hasan M, Dong R, Choi HJ, et al. Uniform Resistive Switching with A Thin Reactive Metal Interface Layer in Metal-La0.7Ca0.3MnO3-metal Heterostructures[J]. Appl. Phys. Lett., 2008, 92(20): 202102-1–3.

[10]

Liao Z, Gao P, Meng Y, et al. Electroforming and Endurance Behavior of Al/Pr0.7Ca0.3MnO3/Pt Devices[J]. Appl. Phys. Lett., 2011, 99(11): 113506-1-3.

[11]

Liu X, Biju KP, Park S, et al. Improved Resistive Switching Properties in Pt/Pr0.7Ca0.3MnO3/Y2O3-Stabilized ZrO2/W via-hole Structures[J]. Curr. Appl. Phys., 2011, 11(2): 58-61.

[12]

Yang R, Li XM, Yu WD, et al. Resistance-switching Properties of La0. 67Ca0.33MnO3 Thin Films with Ag—Al Alloy Top Electrodes[J]. Appl. Phys. A, 2009, 97(1): 85-90.

[13]

Liu DQ, Wang N, Wang G, et al. Programmable Metallization Cells Based on Amorphous La0.79Sr0.21MnO3 Thin Films for Memory Applications[J]. J. Alloys Compd., 2013, 580(24): 354-357.

[14]

Wang H, Li Z, Xu J, et al. Effects of Electrode on Resistance Switching Properties of ZnMn2O4 Films Deposited by Magnetron Sputtering[J]. J. Wuhan University of Technology-Mater. Sci. ed., 2016, 31(6): 1 230-1 234.

[15]

Chen Q, Wang H, Xu J, et al. Low Temperature Synthesis Amorphous La0.7Zn0.3MnO3 Films Grown on p+-Si Substrates and Its Resistive Switching Properties[J]. J. Wuhan University of Technology-Mater. Sci. ed., 2016, 31(4): 727-730.

[16]

Yan SS, Wang H, Xu JW, et al. Study on the High Performance Resistive Switching Behavior of Ag/La0.7Mg0.3MnO3/p+-Si[J]. J. Synthetic Crystals, 2015, 44(12): 3 493-3 497. (in Chinese)

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/