Coprecipitation Synthesis of Fluorides Nanoparticles with Multiform Structures and Mechanisms Research

Rui Wu , Shenghai Zhang , Qiang Zhang , Cunfang Liu , Juan Song , Liang Hao , Guanghui Tian , Jiagen Lü

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 558 -562.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (3) : 558 -562. DOI: 10.1007/s11595-019-2087-x
Advanced Materials

Coprecipitation Synthesis of Fluorides Nanoparticles with Multiform Structures and Mechanisms Research

Author information +
History +
PDF

Abstract

Fluoride nanoparticles with multiform crystal structures and morphologies were successfully synthesized by a facile, effective, and environmentally friendly coprecipitation method. Transmission electron microscopy (TEM) was used to characterize the nanoparticles. The nanoparticles were modified by PEI, CTAB, PAA and Ci, respectively. It was feasible for function by -COOH and -NH2 groups, due to the surface modification. Moreover, different surface modifications of the nanoparticles were examined. The possible formation mechanisms for fluoride nanoparticles with surface modification were presented in detail. More importantly, it is expected to be widely applied to biomedicine.

Keywords

fluorides nanoparticles / synthesis / mechanisms

Cite this article

Download citation ▾
Rui Wu, Shenghai Zhang, Qiang Zhang, Cunfang Liu, Juan Song, Liang Hao, Guanghui Tian, Jiagen Lü. Coprecipitation Synthesis of Fluorides Nanoparticles with Multiform Structures and Mechanisms Research. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(3): 558-562 DOI:10.1007/s11595-019-2087-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akhavan O. Graphene Scaffolds in Progressive Nanotechnology/Stem Cell-Based Tissue Engineering of the Nervous System[J]. J. Mater. Chem. B, 2016, 4(19): 3 169-3 190.

[2]

Ariga K, Ji Q M, Nakanishi W, et al. Nanoarchitectonics: A New Materials Horizon for Nanotechnology[J]. Mater. Horiz., 2015, 2(4): 406-413.

[3]

Shimanovich U, Gedanken A. Nanotechnology Solutions to Restore Antibiotic Activity. Nanotechnology Solutions to Restore Antibiotic Activity[J]. J. Mater. Chem. B, 2016, 4(5): 824-833.

[4]

Guan F F, Yao L F, Xie F J, et al. Optical and Magnetic Properties of Fe2O3/SiO2 Nano-Composite Films[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2009, 25(2): 206-209.

[5]

Wan M, Zhang G, He K H, et al. First-Principles Study on Adsorption of Au Atom on Hydroxylated SiO2 Surface[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(6): 1 184-1 188.

[6]

Jitendra S, Shivani S, Shantanu V L. Applications of Nanomaterials in Dental Science: A Review[J]. J. Nanosci. Nanotechnol., 2017, 17: 2 235-2 255.

[7]

Stephen W, Lauren F G. Post-Synthesis Separation and Storage of Zero-Valent Iron Nanoparticles[J]. J. Nanosci. Nanotechnol., 2017, 17: 2 413-2 422.

[8]

Corato R D, Nadja C B, Ragusa A, et al. Multifunctional Nanobeads Based on Quantum Dots and Magnetic Nanoparticles: Synthesis and Cancer Cell Targeting and Sorting[J]. ACS Nano, 2011, 5(2): 1 109-1 121.

[9]

Rehman F U, Zhao C, Jiang H, et al. Biomedical Applications of Nano-Titania in Theranostics and Photodynamic Therapy[J]. Biomater. Sci., 2016, 4(1): 40-54.

[10]

Filippi M, Martinelli J, Mula G S, et al. Dendrimersomes: A New Vesicular Nano-Platform for MR-Molecular Imaging Applications[J]. Chem. Commun., 2014, 50(26): 3 453-3 456.

[11]

Ulyana S, Bernardes G J L, Knowles T P J, et al. Protein Micro-and Nano-Capsules for Biomedical Applications[J]. Chem. Soc. Rev., 2014, 43(5): 1 361-1 371.

[12]

Yang K, Feng L, Shi X Z, et al. Nano-Graphene in Biomedicine: Theranostic Applications[J]. Chem. Soc. Rev., 2013, 42(2): 530-547.

[13]

Varaprasad K, Ramam K, Reddy G S M, et al. Development and Characterization of Nano-Multifunctional Materials for Advanced Applications[J]. RSC Adv., 2014, 4(104): 60 363-60 370.

[14]

Schmidt L, Dimi A, Kemnitz E. A New Approach to Prepare Nanoscopic Rare Earth Metal Fluorides: the Fluorolytic Sol-Gel Synthesis of Ytterbium Fluoride[J]. Chem. Commun., 2014, 50(33): 6 613-6 616.

[15]

Kaczmarek A M, Hecke K V, Deun R V. Nano- and Micro-Sized Rare-Earth Carbonates and Their Use as Precursors and Sacrificial Templates for the Synthesis of New Innovative Materials[J]. Chem. Soc. Rev., 2015, 44(8): 2 032-2 059.

[16]

Wang F, Han Y, Lim C S, et al. Simulaneous Phase and Size Control of Upconversion Nanocrystals Through Lanthanide Doping[J]. Nature, 2010, 463(25): 1 061-1 065.

[17]

Mai H X, Zhan Y W, Si R, et al. High-Quality Sodium Rare-Earth Fluoride Nanocrystals Controlled Synthesis and Optical Properties[J]. J. Am. Chem. Soc., 2006, 128(19): 6 426-6 436.

[18]

Bouzigues C, Gacoin T, Alexandrou A. Biological Applications of Rare-Earth Based Nanoparticles[J]. ACS Nano, 2011, 5(11): 8 488-8 505.

[19]

Yu M X, Li F Y, Chen Z G. Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors[J]. Anal. Chem., 2009, 81(3): 930-935.

[20]

Wang F, Liu X G. Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles[J]. J. Am. Chem. Soc., 2008, 130(17): 5 642-5 643.

[21]

Xiong L. Q, Shen B, Behera D, et al. Synthesis of Ligand-Functionalized Water-Soluble[18F]YF3 Nanoparticles for PET imaging[J]. Nanoscale, 2013, 5: 3 253-3 256.

[22]

Navadeep S, Khan L U, Vargas J M. Efficient Multicolor Tunability of Ultrasmall Ternary-doped LaF3 Nanoparticles: Energy Conversion and Magnetic Behavior[J]. Phys. Chem. Chem. Phys., 2017, 19(28): 18 660-18 670.

[23]

Wang M, Hou W, Mi C C, et al. Immunoassay of Goat Antihuman Immunoglobulin G Antibody Based on Luminescence Resonance Energy Transfer between Near-Infrared Responsive NaYF4: Yb, Er Upconversion Fluorescent Nanoparticles and Gold Nanoparticles[J]. Anal. Chem., 2009, 81(21): 8 783-8 789.

[24]

Diamente P R, Burke R D, Frank C J, et al. Bioconjugation of Ln3+-Doped LaF3 Nanoparticles to Avidin[J]. Langmuir, 2006, 22: 1 782-1 788.

[25]

Guan B Y, Wang T, Zeng S J, et al. A Versatile Cooperative Template-Directed Coating Method to Synthesize Hollow and Yolk-Shell Mesoporous Zirconium Titanium Oxide Nanospheres as Catalytic Reactors[J]. Nano Res., 2014, 7(2): 246-262.

[26]

Wang Z L, Hao J H, Chan H L W. Down-and Up-Conversion Photoluminescence, Cathodoluminescence and Paramagnetic Properties of NaGdF4: Yb3+, Er3+ Submicron Disks Assembled From Primary Nanocrystals[J]. J. Mater. Chem., 2010, 20(16): 3 178-3 123.

[27]

He F, Yang P, Wang D, et al. Self-Assembled β-NaGdF4 Microcrystals: Hydrothemal Synthesis, Morphology Evolution, and Luminescence Properties[J]. Inorg. Chem., 2011, 50(9): 4 116-4 124.

[28]

Qu X S, Pan G H, Yang H K, et al. Low-Temperature Synthesis of Luminescent and Mesoporous b-NaYF4 Microspheres via Polyol-Mediated Solvothermal Route[J]. RSC Adv., 2013, 3(3): 4 763-4 764.

[29]

Wu X J, Zhang Q B, Wang X, et al. One-Pot Synthesis of Carboxyl-Functionalized Rare Earth Fluoride Nanocrystals with Monodispersity, Ultrasmall Size and Very Bright Luminescence[J]. Eur. J. Inorg. Chem., 2011, 2011(13): 2 158-2 163.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/