Synthesis of PEI-Functionalized Magnetic Nanoparticles for Capturing Bacteria

Baoli Chen , Hao Xie , Ao Zhang , Nian Liu , Qichang Li , Junhui Guo , Baolian Su

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 236 -242.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 236 -242. DOI: 10.1007/s11595-019-2041-y
Biomaterials

Synthesis of PEI-Functionalized Magnetic Nanoparticles for Capturing Bacteria

Author information +
History +
PDF

Abstract

Polyethyleneimine (PEI) functionalized Fe3O4 MNPs were synthesized by a modified hypothermal oxidative hydrolysis method. The magnetic nanoparticles showed positively charged surface, strong magnetic responsivity and uniform particle size distribution at 56.1±0.6 nm. Aggregation of these magnetic nanoparticles were observed on the surface of different type of bacteria. Magnetic capturing of bacteria were facilitated by these magnetic nanoparticles. The capturing efficiency could reach 90% after two rounds of interactions of 5 minutes. The mechanism and process of interactions between bacteria and polyethyleneimine functionalized Fe3O4 magnetic nanoparticles were explored and discussed. The present study not only provides insight into interactions between Fe3O4@PEI MNPs and bacterial cells, but also opens a new avenue for designing and applying Fe3O4@PEI MNPs as biosensors in microbiology, medicine, and environmental science.

Keywords

magnetic nanoparticles (MNPs) / polyethyleneimine (PEI) / magnetic separation / bacterial surface

Cite this article

Download citation ▾
Baoli Chen, Hao Xie, Ao Zhang, Nian Liu, Qichang Li, Junhui Guo, Baolian Su. Synthesis of PEI-Functionalized Magnetic Nanoparticles for Capturing Bacteria. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(1): 236-242 DOI:10.1007/s11595-019-2041-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mu X, Qiao J, Qi L, et al. Construction of a D–Amino Acid Oxidase Reactor Based on Magnetic Nanoparticles Modified by a Reactive Polymer and Its Application in Screening Enzyme Inhibitors[J]. Acs Appl. Mater. Inter., 2014, 6(15): 12 979-12 987.

[2]

Arakaki A, Masuda F, Amemiya Y, et al. Control of the Morphology and Size of Magnetite Particles with Peptides Mimicking the Mms6 Protein from Magnetotactic Bacteria[J]. J. Colloid Interf. Sci., 2010, 343(1): 65-70.

[3]

Wang G, Ma Y, Wei Z, et al. Development of Multifunctional Cobalt ferrite/Graphene Oxide Nanocomposites for Magnetic Resonance Imaging and Controlled Drug Delivery[J]. Chem. Eng. J., 2016, 289: 150-60.

[4]

Kyeong S, Jeong C, Kang H, et al. Double–Layer Magnetic Nanoparticle–Embedded Silica Particles for Efficient Bio–Separation[J]. PLoS One., 2015

[5]

Hua C, Xia T, Gong Y, et al. Emulsifier–free Emulsion Polymerized poly(MMA–HEMA–Eu(AA)(3)Phen)/Fe3O4 Magnetic Fluorescent Bifunctional Nanospheres for Magnetic Resonance and Optical Imaging[ J]. Chin. J. Polym. Sci., 2016, 34(2): 135-146.

[6]

Ray Chowdhuri A, Bhattacharya D, Sahu SK. Magnetic Nanoscale Metal Organic Frameworks for Potential Targeted Anticancer Drug Delivery, Imaging and as an MRI Contrast Agent[J]. Dalton Trans., 2016, 45(7): 2 963-2 973.

[7]

Zhao W, Cui B, Qiu H, et al. Multifunctional Fe3O4@WO3@ mSiO(2)–APTES Nanocarrier for Targeted Drug Delivery and Controllable Release with Microwave Irradiation Triggered by WO3[J]. Mater. Lett., 2016, 169: 185-8.

[8]

Mi C, Zhang J, Gao H, et al. Multifunctional Nanocomposites of Superparamagnetic(Fe3O4) and NIR–responsive Rare Earth–doped up–conversion Fluorescent(NaYF4:Yb,Er) Nanoparticles and Their Applications in Biolabeling and Fluorescent Imaging of Cancer Cells[J]. Nanoscale, 2010, 2(7): 1 141-1 148.

[9]

Justin R, Tao K, Roman S, et al. Photoluminescent and Superparamagnetic Reduced Graphene Oxide–iron Oxide Quantum Dots for Dual–modality Imaging, Drug Delivery and Photothermal Therapy[J]. Carbon, 2016, 97: 54-70.

[10]

Patsula V, Kosinova L, Lovric M, et al. Superparamagnetic Fe3O4 Nanoparticles: Synthesis by Thermal Decomposition of Iron(III) Glu–Curonate and Application in Magnetic Resonance Imaging[J]. ACS Appl. Mater. Inter., 2016, 8(11): 7 238-7 247.

[11]

Yazdani F, Fattahi B, Azizi N. Synthesis of Functionalized Magnetite Nanoparticles to Use as Liver Targeting MRI Contrast Agent[J]. J. Magn. Magn. Mater., 2016, 406: 207-211.

[12]

Singh S, Barick KC, Bahadur D. Surface Engineered Magnetic Nanoparticles for Removal of Toxic Metal Ions and Bacterial Pathogens[ J]. J. Hazard Mater., 2011, 192(3): 1 539-1 547.

[13]

Ho KC, Tsai PJ, Lin YS, et al. Using Biofunctionalized Nanoparticles to Probe Pathogenic Bacteria[J]. Anal. Chem., 2004, 76(24): 7 162-7 168.

[14]

Reddy PM, Chang KC, Liu ZJ, et al. Functionalized Magnetic Iron Oxide(Fe3O4) Nanoparticles for Capturing Gram–Positive and Gram–Negative Bacteria[J]. J. Biomed. Nanotech., 2014, 10(8): 1 429-1 439.

[15]

Das M, Dhak P, Gupta S, et al. Highly Biocompatible and Water–dispersible, Amine Functionalized Magnetite Nanoparticles, Prepared by a Low Temperature, Air–assisted Polyol Process: a New Platform for Bio–separation and Diagnostics[J]. Nanotechnology, 2010, 21(12): 125 103

[16]

Brosel–Oliu S, Abramova N, Bratov A, et al. Sensitivity and Response Time of Polyethyleneimine Modified Impedimetric Transducer for Bacteria Detection[J]. Electroanalysis, 2015, 27(3): 656-662.

[17]

Grumezescu AM, Andronescu E, Holban AM, et al. Water Dispersible Cross–linked Magnetic Chitosan Beads for Increasing the Antimicrobial Efficiency of Aminoglycoside Antibiotics[J]. Int. J. Pharm., 2013, 454(1): 233-240.

[18]

Zhu M, Liu W, Liu H, et al. Construction of Fe3O4/Vancomycin/PEG Magnetic Nanocarrier for Highly Efficient Pathogen Enrichment and Gene Sensing[J]. Acs Appl. Mater. Inter., 2015, 7(23): 12 873-12 881.

[19]

Amouei A, Bagher Miranzadeh M, Shahandeh Z, et al. A Study on the Microbial Quality of Drinking Water in Rural Areas of Mazandaran Province in North of Iran(2011)[J]. J. Environ. Prot., 2012, 03(07): 605-609.

[20]

Yang C, Xie H, Li QC, et al. Adherence and Interaction of Cationic Quantum Dots on Bacterial Surfaces[J]. J. Colloid Interf. Sci., 2015, 450: 388-935.

[21]

Xue S–H, Xie H, Ping H, et al. Induced Transformation of Amorphous Silica to Cristobalite on Bacterial Surfaces[J]. RSC Adv., 2015, 5(88): 71 844-71 848.

[22]

Sugimoto T, Matijević E. Formation of Uniform Spherical Magnetite Particles by Crystallization from Ferrous Hydroxide Gels[J]. J. Colloid Interf. Sci., 1980, 74(1): 227-243.

[23]

Pilar Calatayud M, Sanz B, Raffa V, et al. The Effect of Surface Charge of Functionalized Fe3O4 Nanoparticles on Protein Adsorption and Cell Uptake[J]. Biomaterials, 2014, 35(24): 6 389-6 399.

[24]

Zhang X, Niu Y, Meng X, et al. Structural Evolution and Characteristics of the Phase Transformations between α–Fe2O3, Fe3O4 and γ–Fe2O3 Nanoparticles under Reducing and Oxidizing Atmospheres[J]. Cryst. Eng. Comm., 2013, 15(40): 8 166-8 172.

[25]

Li G, Jiang Y, Huang K, et al. Preparation and Properties of Magnetic Fe3O4–chitosan Nanoparticles[J]. J. Alloys Compd., 2008, 466(1–2): 451-456.

[26]

Parkinson GS, Novotny Z, Argentero G, et al. Carbon Monoxide–induced Adatom Sintering in a Pd–Fe3O4 Model Catalyst[J]. Nat. Mater., 2013, 12(8): 724-728.

[27]

Qiao S, Luo Q, Zhao Y, et al. Structural Basis for Lipopolysaccharide Insertion in the Bacterial Outer Membrane[J]. Nature, 2014 108-U523.

[28]

Bos MP, Tommassen J. Biogenesis of the Gram–negative Bacterial Outer Membrane[J]. Curr. Opin. Microbiol., 2004, 7(6): 610-616.

[29]

Covas G, Vaz F, Henriques G, et al. Analysis of Cell Wall Teichoic Acids in Staphylococcus Aureus[J]. Methods Mole. Biol., 2016 201-213.

[30]

Vemula H, Ayon NJ, Gutheil WG. Cytoplasmic Peptidoglycan Intermediate Levels in Staphylococcus aureus[J]. Biochimie, 2016, 121: 72-78.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/