Excellent Electrochemical Performances of Intrinsic Polyaniline Nanofibers Fabricated by Electrochemical Deposition

Shaoyun Chen , Ben Liu , Yuan Wang , Huan Cheng , Xingying Zhang , Shaoqin Xu , Hui Liu , Wenfeng Liu , Chenglong Hu

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 216 -222.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 216 -222. DOI: 10.1007/s11595-019-2038-6
Organic Materials

Excellent Electrochemical Performances of Intrinsic Polyaniline Nanofibers Fabricated by Electrochemical Deposition

Author information +
History +
PDF

Abstract

A simple route to synthesize the polyaniline (PANI) nanofibers with diameter about 150 nm was reported. In this strategy, the PANI nanofibers were fabricated by electrochemical deposition by using two-electrode configuration in 0.01 M aniline and 0.01 M H2SO4 electrolytes. The as-prepared materials were characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR), Raman spectroscopy and thermogravimetric analysis (TGA). The electrochemical properties of the PANI nanofibers electrode as supercapacitor materials were investigated. The PANI nanofibers electrode showed high capacitance of 485 F·g-1 at 0.1 A·g-1, and the decrease in the specific capacitance is about 3.5% in 1 000 cycles. The results indicate that the PANI nanofibers electrode shows high stability and retains its electrochemical capacitance property over 1 000 cycles, suggesting PANI nanofibers have promising applications in high-performance supercapacitors.

Keywords

polyaniline / nanofibers / nanostructured electrodes / electrochemical capacitors

Cite this article

Download citation ▾
Shaoyun Chen, Ben Liu, Yuan Wang, Huan Cheng, Xingying Zhang, Shaoqin Xu, Hui Liu, Wenfeng Liu, Chenglong Hu. Excellent Electrochemical Performances of Intrinsic Polyaniline Nanofibers Fabricated by Electrochemical Deposition. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(1): 216-222 DOI:10.1007/s11595-019-2038-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Simon P, Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat. Mater., 2008, 7: 845-854.

[2]

Miller JR, Simon P. Electrochemical Capacitors for Energy Management[ J]. Science Magazine, 2008 651-652.

[3]

Kötz R, Carlen M. Principles and Applications of Electrochemical Capacitors[ J]. Electrochim. Acta, 2000, 45: 2 483-2 498.

[4]

El–Kady MF, Strong V, Dubin S, et al. Laser Scribing of High–Performance and Flexible Graphene–Based Electrochemical Capacitors[J]. Science, 2012 326-1 330.

[5]

Rudge A, Davey J, Raistrick I, et al. Conducting Polymers as Active Materials in Electrochemical Capacitors[J]. J. Power Sources, 1994, 47(1–2): 89-107.

[6]

Yu G, Hu L, Vosgueritchian M, et al. Solution–Processed Graphene/Mno2 Nanostructured Textiles for High–Performance Electrochemical Capacitors[J]. Nano. Lett., 2011 905-2 911.

[7]

Wu Z S, Ren W, Wang DW, et al. High–Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors[J]. ACS Nano., 2010, 4(10): 5 835-5 842.

[8]

Pu J, Wang T, Wang H, et al. Direct Growth of NiCO2S4 Nanotube Arrays on Nickel Foam as High–Performance Binder–Free Electrodes for Supercapacitors[J]. Chem. PlusChem., 2014, 79(4): 577-583.

[9]

Lee SW, Yabuuchi N, Gallant BM, et al. High–power Lithium Batteries from Functionalized Carbon–Nanotube Electrodes[J]. Nat. Nanotechnol., 2010, 5(7): 531-537.

[10]

Arico AS, Bruce P, Scrosati B, et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices[J]. Nat. Mater., 2005, 4: 366-377.

[11]

Chun SE, Evanko B, Wang X, et al. Design of Aqueous Redox–Enhanced Electrochemical Capacitors with High Specific Energies and Slow Self–Discharge[J]. Nat. Commun., 2015, 6: 7 818.

[12]

Jiang Y, Ling X, Jiao Z, et al. Flexible of Multiwalled Carbon Nanotubes/Manganese Dioxide Nanoflake Textiles for High–Performance Electrochemical Capacitors[J]. Electrochim. Acta, 2015, 153: 246-253.

[13]

Milczarek G, Inganäs O. Renewable Cathode Materials from Biopolymer/Conjugated Polymer Interpenetrating Networks[J]. Science, 2012 468-1 471.

[14]

Reiss P, Couderc E, De Girolamo J, et al. Conjugated Polymers/Semiconductor Nanocrystals Hybrid Materials–Preparation, Electrical Transport Properties and Applications[J]. Nanoscale, 2011, 3(2): 446-489.

[15]

Ren S, Chang LY, Lim SK, et al. Inorganic–Organic Hybrid Solar Cell: Bridging Quantum Dots to Conjugated Polymer Nanowires[J]. Nano. Lett., 2011, 11(19): 3 998-4 002.

[16]

Mei J, Kim DH, Ayzner AL, et al. Siloxane–Terminated Solubilizing Side Chains: Bringing Conjugated Polymer Backbones Closer and Boosting Hole Mobilities in Thin–Film Transistors[J]. J.Am. Chem. Soc., 2011, 133(50): 20 130-20 133.

[17]

Dou L, You J, Yang J, et al. Tandem Polymer Solar Cells Featuring a Spectrally Matched Low–Bandgap Polymer[J]. Nat. Photo., 2012, 6(3): 180-185.

[18]

Meng Y, Wang K, Zhang Y, et al. Hierarchical Porous Graphene/Polyaniline Composite Film with Superior Rate Performance for Flexible Supercapacitors[J]. Adv. Mater., 2013, 25(48): 6 985-6 990.

[19]

Kumar NA, Choi HJ, Shin YR, et al. Polyaniline–Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors[J]. ACS Nano., 2012, 6(2): 1 715-1 723.

[20]

Vonlanthen D, Lazarev P, See K A, et al. A Stable Polyaniline–Benzoquinone–Hydroquinone Supercapacitor[J]. Adv. Mater., 2014, 26(30): 5 095-5 100.

[21]

Uppugalla S, Male U, Srinivasan P. Design and Synthesis of Heteroatoms Doped Carbon/Polyaniline Hybrid Material for High Performance Electrode in Supercapacitor Application[J]. Electrochim. Acta, 2014, 146: 242-248.

[22]

Wang H, Hao Q, Yang X, et al. A Nanostructured Graphene/Polyaniline Hybrid Material for Supercapacitors[J]. Nanoscale, 2010, 2(10): 2 164-2 170.

[23]

Wang K, Huang J, Wei Z. Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors[J]. J. Phys. Chem. C, 2010, 114(17): 8 062-8 067.

[24]

Mi H, Zhang X, Ye X, et al. Preparation and Enhanced Capacitance of Core–Shell Polypyrrole/Polyaniline Composite Electrode for Supercapacitors[ J]. J. Power Sources, 2008, 1: 403-409.

[25]

Li Y, Zhao X, Xu Q, et al. Facile Preparation and Enhanced Capacitance of the Polyaniline/Sodium Alginate Nanofiber Network for Supercapacitors[ J]. Langmuir, 2011, 27(10): 6 458-6 463.

[26]

Mondal S, Rana U, Malik S. Graphene Quantum Dot–Doped Polyaniline Nanofiber as High Performance Supercapacitor Electrode Materials[ J]. Chem. Commun., 2015, 51(62): 12 365-12 368.

[27]

Tran H D, Li D, Kaner RB. One–Dimensional Conducting Polymer Nanostructures: Bulk Synthesis and Applications[J]. Adv. Mater., 2009, 21(14–15): 487-1 499.

[28]

Meng CZ, Liu C H, Fan S S. Flexible Carbon Nanotube/Polyaniline Paper–Like Films and Their Enhanced Electrochemical Properties[J]. Electrochem. Commun., 2009, 11(1): 186-189.

[29]

Peng H, Ma G, Sun K, et al. A Novel Fabrication of Nitrogen–Containing Carbon Nanospheres with High Rate Capability As Electrode Materials for Supercapacitors[J]. RSC Adv., 2015, 5(16): 12 034-12 042.

[30]

Li J, Ren Y, Ren Z, et al. Aligned Polyaniline Nanowires Grown on the Internal Surface of Macroporous Carbon for Supercapacitors[J]. J. Mater. Chem. A, 2015, 3(46): 23 307-23 315.

[31]

Xu H, Li X, Wang G. Polyaniline Nanofibers with A High Specific Surface Area and An Improved Pore Structure for Supercapacitors[J]. J. Power Sources, 2015, 294: 16-21.

[32]

Fan H, Wang H, Zhao N, et al. Hierarchical Nanocomposite of Polyaniline Nanorods Grown on The Surface of Carbon Nanotubes for High–Performance Supercapacitor Electrode[J]. J. Mater. Chem., 2012, 22(6): 2 774-2 780.

[33]

Chen W, Rakhi RB, Alshareef HN. Facile Synthesis of Polyaniline Nanotubes Using Reactive Oxide Templates for High Energy Density Pseudocapacitors[J]. J. Mater. Chem. A, 2013, 1(10): 3 315-3 324.

[34]

Liu T, Finn L, Yu M, et al. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability[J]. Nano Lett., 2014, 14(5): 2 522-2 527.

[35]

Zhao Y, Liu B, Pan L, et al. 3D Nanostructured Conductive Polymer Hydrogels for High–Performance Electrochemical Devices[J]. Energy Environm. Sci., 2013, 6(10): 2 856-2 870.

[36]

Zhang G, Lou X W D. General Solution Growth of Mesoporous NiCO2O4 Nanosheets on Various Conductive Substrates as High–Performance Electrodes for Supercapacitors[J]. Adv. Mater., 2013, 25(7): 976-979.

[37]

Liu C, Yu Z, Neff D, et al. Graphene–Based Supercapacitor with an Ultrahigh Energy Density[J]. Nano Lett., 2010, 10(12): 4 863-4 868.

[38]

Zhang H, Wang J, Wang Z, et al. Electrodeposition of Polyaniline Nanostructures: A Lamellar Structure[J]. Synth. Met., 2009, 159(3–4): 277-281.

[39]

An J, Liu J, Zhou Y, et al. Polyaniline–Grafted Graphene Hybrid with Amide Groups and Its Use in Supercapacitors[J]. J. Phys. Chem. C, 2012, 116(37): 19 699-19 708.

[40]

Xu J, Wang K, Zu SZ, et al. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage[J]. ACS Nano, 2010, 4(9): 5 019-5 026.

[41]

Luo C, Peng H, Zhang L, et al. Formation of Nano–/Microstructures of Polyaniline and Its Derivatives[J]. Macromolecules, 2011, 44(17): 6 899-6 907.

[42]

Wan M, Yang J. Mechanism of Proton Doping in Polyaniline[J]. J. App. Polym. Sci., 1995, 55(3): 399-405.

[43]

Huang J, Virji S, Weiller BH, et al. Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors[J]. J. Am. Chem. Soc., 2003, 125(2): 314-315.

[44]

Kumar NA, Choi HJ, Shin YR, et al. Polyaniline–Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors[J]. ACS Nano, 2012, 6(2): 1 715-1 723.

[45]

Wang L, Ye Y, Lu X, et al. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors[ J]. Sci. Rep., 2013, 3: 3 568.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/