Morphological, Mechanical and Thermal Properties of Poly(lactic acid) (PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering

Zhangqiang Yang , Xiaojie Li , Junhui Si , Zhixiang Cui , Kaiping Peng

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 207 -215.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 207 -215. DOI: 10.1007/s11595-019-2037-7
Organic Materials

Morphological, Mechanical and Thermal Properties of Poly(lactic acid) (PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering

Author information +
History +
PDF

Abstract

Composite nanofiber membranes based on biodegradable poly(lactic acid) (PLA) and cellulose nanofibrils (CNF) were produced via electrospinning. The influence of CNF content on the morphology, thermal properties, and mechanical properties of PLA/CNF composite nanofiber membranes were characterized by field scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA), respectively. The results show that the PLA/CNF composite nanofibers with smooth, free-bead surface can be successfully fabricated with various CNF contents. The introduction of CNF is an effective approach to improve the crystalline ability, thermal stability and mechanical properties for PLA/CNF composite fibers. The Young’s moduli and tensile strength of the PLA/CNF composite nanofiber reach 106.6 MPa and 2.7 MPa when the CNF content is 3%, respectively, which are one times higher and 1.5 times than those of pure PLA nanofiber. Additionally, the water contact angle of PLA/CNF composite nanofiber membranes decreases with the increase of the CNF loading, resulting in the enhancement of their hydrophilicity.

Keywords

poly(lactic acid) (PLA) / cellulose nanofibrils (CNF) / electrospinning / mechanical and thermal properties

Cite this article

Download citation ▾
Zhangqiang Yang, Xiaojie Li, Junhui Si, Zhixiang Cui, Kaiping Peng. Morphological, Mechanical and Thermal Properties of Poly(lactic acid) (PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(1): 207-215 DOI:10.1007/s11595-019-2037-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meng Z X, Li H F, Sun Z Z, et al. Fabrication of Mineralized Electrospun PLGA and PLGA/gelatin Nanofibers and Their Potential in Bone Tissue Engineering[J]. Mat. Sci. Eng. C–Mater., 2013, 33(2): 699-706.

[2]

Wang G, Hu X, Lin W, et al. Electrospun PLGA–silk Fibroin–collagen Nanofibrous Scaffolds for Nerve Tissue Engineering[J]. In Vitro Cell. Dev–An., 2011, 47(3): 234-240.

[3]

Chen H L, Huang J, Yu J H, et al. Electrospun Chitosan–graft–poly(epsilon–caprolactone)/Poly(epsilon–caprolactone) Cationic Nanofibrous Mats as Potential Scaffolds for Skin Tissue Engineering[J]. Int. J. Biol. Macromol., 2011, 48(1): 13-19.

[4]

Yin G B, Zhang Y Z, Wang S D, et al. Study of the Electrospun PLA/Silk Fibroin–gelatin Composite Nanofibrous Scaffold for Tissue Engineering[J]. J. Biomed. Mater. Res. A, 2010, 93(1): 158-163.

[5]

Lee W Y, Cheng W Y, Yeh Y C, et al. Magnetically Directed Selfassembly of Electrospun Superparamagnetic Fibrous Bundles to Form Three–dimensional Tissues with a Highly Ordered Architecture[J]. Tissue Eng. Pt. C–Meth., 2011, 17(6): 651-661.

[6]

Poursamar S A, Hatami J L, Alexander N, et al. Gelatin Porous Scaffolds Fabricated Using a Modified Gas Foaming Technique: Characterisation and Cytotoxicity Assessment[J]. Mat. Sci. Eng. C, 2015, 48: 63-70.

[7]

Diba M, Fathi M H, Kharaziha M. Novel Forsterite/Polycaprolactone Nanocomposite Scaffold for Tissue Engineering Applications[J]. Mater. Lett., 2011, 65(12): 1 931-1 934.

[8]

Mannella G A, Conoscenti G, Carfi Pavia F, et al. Preparation of Polymeric Foams with a Pore Size Gradient via Thermally Induced Phase Separation(TIPS)[J]. Mater. Lett., 2015, 160: 31-33.

[9]

Hernandez–cordova R, Mathew D A, Balint R, et al. Indirect Threedimensional Rrinting: A Method for Fabricating Polyurethane–urea Based Cardiac Scaffolds[J]. Biomed. Mater. Res. A, 2016, 104(8): 1 912-1 921.

[10]

Chen M C, Sun Y C, Chen Y H. Electrically Conductive Nanofibers with Highly Oriented Structures and Their Potential Application in Skeletal Muscle Tissue Engineering[J]. Acta Biomater., 2013, 9(3): 5 562-5 572.

[11]

Wei G, Li C, Fu Q, et al. Preparation of PCL/silk Fibroin/Collagen Electrospun Fiber for Urethral Reconstruction[J]. Int. Urol. Nephrol., 2015, 47(1): 95-99.

[12]

Vaz C M, Van Tuijl S, Bouten C V C, et al. Design of Scaffolds for Blood Vessel Tissue Engineering Using a Multi–layering Electrospinning Technique[J]. Acta Biomater., 2005, 1(5): 575-582.

[13]

Paskiabi F A, Mirzaei E, Amani A, et al. Optimizing Parameters on Alignment of PCL/PGA Nanofibrous Scaffold: An Artificial Neural Networks Approach[J]. Int. J. Biol. Macromol., 2015, 81: 1 089-1 097.

[14]

Zong X, Bien H, Chung C Y, et al. Electrospun Fine–textured Scaffolds for Heart Tissue Constructs. Biomaterials, 2005, 26(26): 5 330-5 338.

[15]

Rockwood D N, Akins– R E Jr, Parrag I C, et al. Culture on Electrospun Polyurethane Scaffolds Decreases Atrial Natriuretic Peptide Expression by Cardiomyocytes in Vitro[J]. Biomaterials, 2008, 29(36): 4 783-4 791.

[16]

Yong C S, Lee J H, Jin L, et al. Stimulated Myoblast Differentiation on Graphene Oxide–impregnated PLGA–Collagen Hybrid Fibre Matrices[J]. J. Nanobiotechno., 2015, 13(1): 1-11.

[17]

Han J J, Lazarovici P, Pomerantz C, et al. Co–electrospun Blends of PLGA, Gelatin, and Elastin as Potential Nonthrombogenic Scaffolds for Vascular Tissue Engineering[J]. Biomacromolecules, 2011, 12(2): 399-408.

[18]

Rajzer I, Rom M, Menaszek E, et al. Conductive PANI Patterns on Electrospun PCL/Gelatin Scaffolds Modified with Bioactive Particles for Bone Tissue Engineering[J]. Mater. Lett., 2015, 138: 60-63.

[19]

Ji Y, Liang K, Shen X, et al. Electrospinning and Characterization of Chitin Nanofibril/Polycaprolactone Nanocomposite Fiber Mats[J]. Carbohyd. Polym., 2014, 101: 68-74.

[20]

Atila D, Keskin D, Tezcaner A. Cellulose Acetate Based 3–dimensional Electrospun Scaffolds for Skin Tissue Engineering Applications[J]. Carbohyd. Polym., 2015, 133: 251-261.

[21]

Jing X, Mi H Y, Wang X C, et al. Shish–kebab–structured Poly(epsilon–caprolactone) Nanofibers Hierarchically Decorated with Chitosan–poly(epsilon–caprolactone) Copolymers for Bone Tissue Engineering[J]. ACS Appl. Mater. Inter., 2015, 7(12): 6 955-6 965.

[22]

Shao S, Zhou S, Li L, et al. Osteoblast Function on Electrically Conductive Electrospun PLA/MWCNTs Nanofibers[J]. Biomaterials, 2011, 32(11): 2 821-2 833.

[23]

Lin C C, Fu S J, Lin Y C, et al. Chitosan–coated Electrospun PLA Fibers for Rapid Mineralization of Calcium Phosphate[J]. Int. J. Biol. Macromol., 2014, 68: 39-47.

[24]

Abdul–Khalil H P S, Bhat A H, Ireana–Yusra A F. Green Composites from Sustainable Cellulose Nanofibrils: A Review[J]. Carbohyd. Polym., 2012, 87(2): 963-979.

[25]

Zoppe J O, Peresin M S, Habibi Y, et al. Reinforcing Poly(ε–caprolactone) Nanofibers with Cellulose Nanocrystals[J]. ACS Appl. Mater. Inter., 2009, 1(9): 1 996-2 004.

[26]

Mandal A, Chakrabarty D. Studies on the Mechanical, Thermal, Morphological and Barrier Properties of Nanocomposites Based on Poly(vinyl alcohol) and Nanocellulose from Sugarcane Bagasse[J]. J. Ind. Eng. Chem, 2014, 20(2): 462-473.

[27]

Mo Y, Guo R, Liu J, et al. Preparation and Properties of PLGA Nanofiber Membranes Reinforced with Cellulose Nanocrystals[J]. Colloid. Surface. B, 2015, 132: 177-184.

[28]

Zamani M, Morshed M, Varshosaz J, et al. Controlled Release of Metronidazole Benzoate from Poly ε–caprolactone Electrospun Nanofibers for Periodontal Diseases[J]. Eur. J. Pharm. Biopharm., 2010, 75(2): 179-185.

[29]

Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, et al. Effect of Solvents on Electro–spinnability of Polystyrene Solutions and Morphological Appearance of Resulting Electrospun Polystyrene Fibers[J]. Eur. Polym. J., 2005, 41(3): 409-421.

[30]

Shalumon K T, Anulekha K H, Girish C M, et al. Effect of Solvents on Electro–spinnability of Polystyrene Solutions and Morphological Appearance of Resulting Electrospun Polystyrene Fibers[J]. Carbohyd. Polym., 2010, 80(2): 413-419.

[31]

Zulkifli F H, Hussain F S, Rasad M S, et al. Nanostructured Materials from Hydroxyethyl Cellulose for Skin Tissue Engineering[J]. Carbohyd. Polym., 2014, 114: 238-245.

[32]

Alemdar A, Sain M. Isolation and Characterization of Nanofibers from Agricultural Residues–wheat Straw and Soy Hulls[J]. Bioresource Technol., 2008, 99(6): 1 664-1 671.

[33]

Saeidlou S, Huneault M A, Li H, et al. Evidence of a Dual Network/Spherulitic Crystalline Morphology in PLA Stereocomplexes[J]. Polymer, 2012, 53(25): 5 816-5 824.

[34]

Zhao H, Cui Z, Sun X, et al. Morphology and Properties of Injection Molded Solid and Microcellular Polylactic Acid/Polyhydroxybutyratevalerate(PLA/PHBV) Blends[J]. Ind. Eng. Chem. Res., 2013, 52(7): 2 569-2 581.

[35]

Benhamou K, Kaddami H, Magnin A, et al. Bio–based Polyurethane Reinforced with Cellulose Nanofibers: A Comprehensive Investigation on the Effect of Interface[J]. Carbohyd. Polym., 2015, 122: 202-211.

[36]

Xu Z, Niu Y, Yang L, et al. Morphology, Rheology and Crystallization Behavior of Polylactide Composites Prepared Through Addition of Five–armed Star Polylactide Grafted Multiwalled Carbon Nanotubes[J]. Polymer, 2010, 51(3): 730-737.

[37]

Sambudi N S, Sathyamurthy M, Lee G M, et al. Electrospun Chitosan/Poly(vinyl alcohol) Reinforced with CaCO3 Nanoparticles with Enhanced Mechanical Properties and Biocompatibility for Cartilage Tissue Engineering[J]. Compos. Sci. Technol., 2015, 106: 76-84.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/