Dielectric Properties of Polytetrafluoroethylene/CaCu3Ti4O12 Composites

Fei Liang , Yifei Zhao , Xizi Chen , Qianxing Wan , Wenzhong Lü

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 189 -194.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 189 -194. DOI: 10.1007/s11595-019-2034-x
Organic Materials

Dielectric Properties of Polytetrafluoroethylene/CaCu3Ti4O12 Composites

Author information +
History +
PDF

Abstract

Polymer-based composite was investigated by embedding calcium copper titanate (CaCu3Ti4O12; CCTO) fillers into polytetrafluoroethylene(PTFE) matrix. The dielectric performances of the composite were investigated within the frequency range from 100 Hz to 1 MHz. It is indicated that dielectric permittivity (ε) and dielectric loss (tanδ) increase gradually as the filler content increases. Dielectric permittivity for the composite with 50 vol% CCTO filler loading is 33.5, approximately 16 times higher than that of pure PTFE (ε = 2.1) at 100 Hz. As the frequency increases, the dielectric loss decreases rapidly and reaches stability, and then remains low when the frequency rises to 1 MHz. The values for dielectric permittivity and dielectric loss in the microwave frequency (8-13 GHz) are lower than that in low frequency of 10 kHz for the composites because of different polarization modes. Several theoretical models were implemented to compare the experimental results with the theoretical calculations and the modified Lichtenecker equation was found to fit the best.

Keywords

composite / CCTO / PTFE / dielectric properties / theoretical model

Cite this article

Download citation ▾
Fei Liang, Yifei Zhao, Xizi Chen, Qianxing Wan, Wenzhong Lü. Dielectric Properties of Polytetrafluoroethylene/CaCu3Ti4O12 Composites. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(1): 189-194 DOI:10.1007/s11595-019-2034-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dang Z M, Yuan J K, Zha J W, et al. Fundamentals, Processes and Applications of High–permittivity Polymer Matrix Composites[J]. Progress in Materials Science, 2012, 57(4): 660-723.

[2]

Dang Z M, Yuan J K, Yao S H, et al. Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage[J]. Advanced Materials, 2013, 25(44): 6 334-6 365.

[3]

Sebastian M T, Jantunen H. Polymer–Ceramic Composites of 0–3 Connectivity for Circuits in Electronics: A Review[J]. International Journal of Applied Ceramic Technology, 2010, 7(4): 415-434.

[4]

Subodh G, Deepu V, Mohanan P, et al. Dielectric Response of High Permittivity Polymer Ceramic Composite with Low Loss Tangent[J]. Applied Physics Letters, 2009, 95(6): 062 903

[5]

Singh P, Borkar H, Singh B P, et al. Ferroelectric Polymer–Ceramic Composite Thick Films for Energy Storage Applications[J]. Aip Advances, 2014, 4(8): 717-731.

[6]

A Peláiz–Barranco. Dielectric Relaxation and Electrical Conductivity in Ferroelectric Ceramic/Polymer Composites around the Glass Transition[ J]. Applied Physics Letters, 2012, 100: 212 903.

[7]

Lee H J, Zhang S, Meyer R J, et al. Characterization of Piezoelectric Ceramics and 1–3 Composites for High Power Transducers[J]. Applied Physics Letters, 2012, 101(3): 032 902

[8]

Subramanian M A, Li D, Duan N, et al. High Dielectric Constant in A Cu3Ti4O12, and A Cu3Ti3FeO12, Phases[J]. Journal of Solid State Chemistry, 2000, 151(2): 323-325.

[9]

Homes C C, Vogt T, Shapiro S M, et al. Optical Response of High–dielectric–constant Perovskite–related Oxide[J]. Science, 2001

[10]

Adams T B, Sinclair D C, West A R. Giant Barrier Layer Capacitance Effects in CaCu3Ti4O12, Ceramics[J]. Chem. Inform., 2002, 14(51): 1 321-1 323.

[11]

Lunkenheimer P, Bobnar V, Pronin A V, et al. Origin of Apparent Colossal Dielectric Constants[J]. Physical Review B, 2002, 66(5): 340-351.

[12]

Wang C C, Zhang L W. Polaron Relaxation Related to Localized Charge Carriers in CaCu3Ti4O12[J]. Applied Physics Letters, 2007, 90(14): 142 905

[13]

Dang Z M, Zhou T, Yao S H, et al. Advanced Calcium Copper Titanate/Polyimide Functional Hybrid Films with High Dielectric Permittivity[ J]. Advanced Materials, 2009, 21(20): 2 077-2 082.

[14]

Thomas P, Varughese K T, Dwarakanath K, et al. Dielectric Properties of Poly(vinylidene fluoride)/CaCu3Ti4O12 Composites[J]. Composites Science & Technology, 2013, 70(3): 539-545.

[15]

Ehrhardt C, Fettkenhauer C, Glenneberg J, et al. A Solution–based Approach to Composite Dielectric Films of Surface Functionalized CaCu3Ti4O12 and P(VDF–HFP)[J]. Journal of Material Chemistry A, 2014, 2(7): 2 266

[16]

Barbier B, Combettes C, Guillemet–Fritsch S, et al. CaCu3Ti4O12, Ceramics from Coprecip–itation Method: Dielectric Properties of Pellets and Thick Films[J]. Journal of the European Ceramic Society, 2009, 29(4): 731-735.

[17]

Yang Y, Zhu B P, Lu Z H, et al. Polyimide/Nanosized CaCu3Ti4O12, Functional Hybrid Films with High Dielectric Permittivity[J]. Applied Physics Letters, 2013, 102(4): 042 904

[18]

Chen Y, Su H, Xue S, et al. Dielectric Properties of Bi4Ti3O12 Ceramics by Impedance Spectroscopic Method[J]. Journal of Wuhan University of Technology, 2016, 31(5): 977-981.

[19]

Zhang L, Zhao J, Huang E Q, et al. Preparation and Dielectric Properties of(Ba0.5Sr0.4Ca0.1)TiO3/Polystyrene Composites[J]. Journal of Applied Polymer Science, 2015, 132(5): 41 398

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/