Investigation of Novel Short Fiber-like Polyaniline/Cerium Nitrate Composite

Zhihua Li , Yuting Shen , Yanbo Li , Jun Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 183 -188.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 183 -188. DOI: 10.1007/s11595-019-2033-y
Organic Materials

Investigation of Novel Short Fiber-like Polyaniline/Cerium Nitrate Composite

Author information +
History +
PDF

Abstract

Polyaniline (PANI)/Ce(NO3)3 composite with short fiber-like shape was synthesized successfully in a poly (2-arcylamido-2-methylpropane sulfonic acid) aqueous solution. A comparison of SEM images found that short fiber-like composites can be obtained by controlling the dosage of Ce(NO3)3. The length and diameter of short fiber-like PANI/Ce(NO3)3 composite was about 630 and 200 nm, respectively. A special conjugated structure had formed via Ce3+ ions and–NH–group in the quinonoid ring of PANI, which was characterized by means of Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible (UV-Vis) spectroscopy and X-ray photoelectron spectroscopy (XPS). Short fiber-like PANI/Ce(NO3)3 composite exhibited a high conductivity, a large capacitance and an enhanced anticorrosion property. Linear four-probe method confirmed that the electrical conductivity of composites was improved with the presence of Ce3+ ions. The corrosion potential of PANI/Ce(NO3)3 composite increased to -79 mV at 10 wt% of Ce(NO3)3. Meanwhile, the minimum density of corrosion current (1.4 μA/cm2) was also achieved.

Keywords

conducting polymers / polyaniline / cerium nitrate / electrochemical properties

Cite this article

Download citation ▾
Zhihua Li, Yuting Shen, Yanbo Li, Jun Liu. Investigation of Novel Short Fiber-like Polyaniline/Cerium Nitrate Composite. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(1): 183-188 DOI:10.1007/s11595-019-2033-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lorestani F, Shahnavaz Z, Nia P M, et al. One–Step Preparation of Silver–Polyaniline Nanotube Composite for Non–Enzymatic Hydrogen Peroxide Detection[J]. Appl. Surf. Sci., 2015, 347: 816-823.

[2]

Li Z H, Shen Y T, Li Y B, et al. Doping Effects of Cerium Ion on Structure and Electrochemical Properties of Polyaniline[J]. Polym. Int., 2018, 67(1): 121-126.

[3]

Gao F, Cheng Y, An L, et al. Polyaniline Nanotube–ZnO Composite Materials: Facile Synthesis and Application[J]. J. Wuhan University of Technology–Mater. Sci. Ed., 2015, 30(6): 1 147-1 151.

[4]

Li Z H, Shen Y T, Li Y B. Facile Synthesis of Polyaniline Hollow Microsphere via Self–Assembly and Its High Electrochemical Performance[ J]. J. Electrochem. Soc., 2018

[5]

Lei X P, Han D, Wang Y, et al. Synthesis and Electric Properties of Polyethylene Glycol–Modified Gly Ash Floating Bead/Polyaniline Composites[J]. J. Wuhan University of Technology–Mater. Sci. Ed., 2017, 32(1): 197-204.

[6]

Wang Y M, Chen K, Li T X, et al. One–step and Template–free Synthesis of Itaconic Acid–Doped Polyaniline Nanorods in Aqueous Solution[ J]. High Perform. Polym., 2016, 283(3): 322-330.

[7]

Dong C F, Xiao K, Chen T, et al. Characterization and Comparison of Conducting Polyaniline Synthesized by Three Different Pathways[J]. J. Wuhan University of Technology–Mater. Sci. Ed., 2011, 26(6): 1 068-1 072.

[8]

Zhang L, Wan M. Synthesis and Characterization of Self–Assembled Polyaniline Nanotubes Doped with D–10–Camphorsulfonic Acid[J]. Nanotechnology, 2002, 13(6): 750-755.

[9]

Erdem E, Karaklsla M, Sacak M. The Chemical Synthesis of Conductive Polyaniline Doped with Dicarboxylic Acids[J]. Eur. Polym. J., 2004, 40(4): 785-791.

[10]

Jelmy E J, Ramakrishnan S, Rangarajan M, et al. Effect of Different Carbon Fillers and Dopant Acids on Electrical Properties of Polyani–line Nanocomposites[J]. Bull. Mater. Sci., 2013, 36(1): 37-44.

[11]

Gribkov D V, Hultzsch K C, Hampel F. 3,3’–Bis(trisarylsilyl)–Substituted Binaphtholate Rare Earth Metal Catalysts for Asymmetric Hydroamination[ J]. J. Am. Chem. Soc., 2006, 128(11): 3 748-3 759.

[12]

Slooff L H, Blaaderen A, Polman A, et al. Rare–Earth Doped Polymers for Planar Optical Amplifiers[J]. J. Appl. Phys., 2002, 91(7): 3 955-3 980.

[13]

Duan C, Sabirianov R F, Mei W N, et al. Electronic, Magnetic and Transport Properties of Rare–Earth Monopnictides[J]. J. Phys. Condens. Matter., 2007, 19(31): 315 220

[14]

Liu Y F, Cao Y H, Huang L, et al. Rare Earth–Mg–Ni–Based Hydrogen Storage Alloys as Negative Electrode Materials for Ni/MH Batteries[J]. J. Alloys Compd., 2011, 509(3): 675-686.

[15]

Kenyon A J. Recent Developments in Rare–Earth Doped Materials for Optoelectronics[J]. Prog. Quantum Electron., 2002, 26(4–5): 225-284.

[16]

Zhang J L, Wang H, Yang S M, et al. Enhanced Conductivity and Fluorescence of Polyaniline Doped with Eu3+, Tb3+ and Y3+ Ions[J]. J. Appl. Polym. Sci., 2012, 125(4): 2 494-2 501.

[17]

Li Y B, Li Z H, Zheng F. Polyaniline/Silver/Cerium Nitrate Ternary Composite: Synthesis, Characterization and Enhanced Electrochemical Properties[J]. J. Appl. Polym. Sci., 2015, 132(46): 42 785

[18]

Huang Z H, Wang S X, Li H, et al. Thermal Stability of Several Polyaniline/Rare Earth Oxide Composites[J]. J. Therm. Anal. Calorim., 2014, 115(1): 259-266.

[19]

Johansen H D, Brett C M A, Motheo A J. Corrosion Protection of Aluminium Alloy by Cerium Conversion and Conducting Polymer Duplex Coatings[J]. Corros. Sci., 2012, 63(5): 342-350.

[20]

Arenas M A, Conde A, de Damborenea J J. Cerium: A Suitable Green Corrosion Inhibitor for Tinplate[J]. Corros. Sci., 2002, 44(3): 511-520.

[21]

Aramaki K. Treatment of Zinc Surface with Cerium(III) Nitrate to Prevent Zinc Corrosion in Aerated 0.5 M NaCl[J]. Corros. Sci., 2001, 43(11): 2 201-2 215.

[22]

Cavus S, Gürdag G. Competitive Heavy Metal Removal by Poly(2–Acrylamido–2–Methyl–1–Propane Sulfonic Acid–co–Itaconic Acid) [J]. Polym. Adv. Technol., 2010, 19(9): 1 209-1 217.

[23]

Ghorbani M, Lashkenari M S, Eisazadeh H. Synthesis and Thermal Stability Studies of Polyaniline/Silver Nanocomposite Based on Reduction of Silver Ions Using Polyaniline[J]. High Perform. Polym., 2011, 23(7): 513-517.

[24]

Chauhan G S, Garg G. Study in Sorption of Cr6+ and NO3–on Poly(2–Acrylamido–2–Methylpropane–1–Sulfonic Acid) Hydrogels[J]. Desalination, 2009, 239(1–3): 1-9.

[25]

Yoo J E, Bucholz T L, Jung S Y, et al. Narrowing the Size Distribution of the Polymer Acid Improves PANI Conductivity[J]_. J. Mater. Chem., 2008, 18(26): 3 129-3 135.

[26]

Li Y B, Li Z H, Zheng F. Polyaniline Hollow Microspheres Synthesized via Self–Assembly Method in a Polymer Acid Aqueous Solution[ J]. Mater. Lett., 2015, 148: 34-36.

[27]

Zhang C Q, Li G C, Peng H R. Large–Scale Synthesis of Self–Doped Polyaniline Nanofibers[J]. Mater. Lett., 2009, 63(6–7): 592-594.

[28]

Jeon J W, O’Neal J, Shao L, et al. Charge Storage in Polymer Acid–Doped Polyaniline–Based Layer–by–Layer Electrodes[J]. ACS Appl. Mater. Interfaces, 2013, 5(20): 10 127-10 136.

[29]

Albuquerque J E, Mattoso L H C, Balogh D T, et al. A Simple Method to Estimate the Oxidation State of Polyanilines[J]. Synth. Met., 2000, 113(1–2): 19-22.

[30]

Song G P, Han J, Bo J, et al. Synthesis of Polyaniline Nanostructures in Different Lamellar Liquid Crystals and Application to Lubrication[J]. J. Mater. Sci., 2009, 44(3): 715-720.

[31]

Mallick K, Witcomb M, Scurrell M, et al. Paramagnetic Polyaniline Nanospheres[J]. Chem. Phys. Lett., 2010, 494(4–6): 232-236.

[32]

Holgado J P, Alvarez R, Munuera G. Study of CeO2 XPS Spectra by Factor Analysis: Reduction of CeO2[J]. Appl. Surf. Sci., 2000, 161(3): 301-315.

[33]

Qiu L M, Liu F, Zhao L Z, et al. Comparative XPS Study of Surface Reduction for Nanocrystalline Ceria Power[J]. Appl. Surf. Sci., 2006, 252(14): 4 931-4 935.

[34]

Chen W C, Wen T C, Teng H S. Polyaniline–Deposited Porous Carbon Electrode for Supercapacitor[J]. Electrochim. Acta, 2003, 48(6): 641-649.

[35]

Yang M M, Cheng B, Song H H, et al. Preparation and Electrochemical Performance of Polyaniline–Based Carbon Nanotubes as Electrode Material for Supercapacitor[J]. Electrochim. Acta, 2010, 55(23): 7 021-7 027.

[36]

Zhu Y, Hu D, Wan M, et al. Conducting and Superhydrophonic Rambutan–Like Hollow Spheres of Polyaniline[J]. Adv. Mater., 2007, 19(19): 2 092-2 096.

[37]

Abalyaeva V V, Dremova N N. Electrochemical Properties of Polyaniline Film Doped by Ce3+ Cation[J]. Russ. J. Electrochem., 2013, 49(2): 188-195.

[38]

Liu J L, Zhou M Q, Fan L Z, et al. Porous Polyaniline Exhibits Highly Enhanced Electrochemical Capacitance Performance[J]. Electrochim. Acta, 2010, 55(20): 5 819-5 822.

[39]

Li Y, Fang Y Z, Liu H, et al. Free–Standing 3D Polyaniline–CNT/Ni–Fiber Hybrid Electrodes for High–Performance Supercapacitors[J]. Nanoscale, 2012, 4(9): 2 867-2 869.

[40]

Li Y Z, Xin Z, Xu Q, et al. Facile Prepararion and Enhanced Capacitance of the Polyaniline/Sodium Alginate Nanofiber Network for Supercapacitors[ J]. Langmuir, 2011, 27(10): 6 458-6 463.

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/