Microstructure and Texture Evolution of Fe-33Mn-3Si-3Al TWIP Steel on Strain

Yangyang Hu , Yu Su , Xiaoxiao Feng , Haotian Cui , Jun Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 176 -182.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 176 -182. DOI: 10.1007/s11595-019-2032-z
Metallic Materials

Microstructure and Texture Evolution of Fe-33Mn-3Si-3Al TWIP Steel on Strain

Author information +
History +
PDF

Abstract

The microstructure and texture evolution of Fe-33Mn-3Si-3Al twinning induced plasticity (TWIP) steel were studied by the scanning electron microscope (SEM) and X-ray diffraction (XRD) at room temperature. After quasi-static tensile, the texture evolution of different strain was observed. It was shown that the Goss and Brass components increased within the strain range of less than 0.6. Whereas, the main components were decreased when the strain levels were greater than 0.6. This behavior was attributed to the low stacking fault energy (SFE) and was related to the strain energy of this high manganese steel. At high strain levels, the high strain energy may contribute to the Brass components transition to the A (rot-Brass) components.

Keywords

strain / microstructure / texture evolution / TWIP steel / strain energy

Cite this article

Download citation ▾
Yangyang Hu, Yu Su, Xiaoxiao Feng, Haotian Cui, Jun Li. Microstructure and Texture Evolution of Fe-33Mn-3Si-3Al TWIP Steel on Strain. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(1): 176-182 DOI:10.1007/s11595-019-2032-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grassel O, Kruger L, Frommeyer G, et al. High Strength Fe–Mn–(Al, Si) TRIP/TWIP Steels Development–Properties Application[J]. International Journal of Plasticity, 2000, 16(10/11): 1 391-1 409.

[2]

Barbier D, Gey N, Allain S, et al. Analysis of the Tensile Behavior of a TWIP Steel Based on the Texture and Microstructure Evolutions[J]. Materials Science and Engineering A, 2009, 500: 196-206.

[3]

Curtze S, Kuokkala VT. Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate[J]. Acta Materialia, 2010, 58: 5 129-5 141.

[4]

Bracke L, Verbeken K, Kestens L, et al. Microstructure and Texture Evolution During Cold Rolling and Annealing of a High Mn TWIP Steel[J]. Acta Materialia, 2009, 57: 1 512-1 524.

[5]

Ahmed A S, Elena V P, Azdiar A Gazder. Texture Evolution of Cold Rolled and Annealed Fe–24Mn–3Al–2Si–1Ni–0.06C TWIP Steel[J]. Materials Science and Engineering A, 2011, 528: 4 537-4 549.

[6]

Bracke L, Verbeken K, Leo A I. Kestens. Texture Generation and Implications in TWIP Steels[J]. Scripta Materialia, 2012, 66: 1 007-1 011.

[7]

Christian H, Sandip Ghosh C, Luis A B, et al. On the Relation of Microstructure and Texture Evolution in an Austenitic Fe–28Mn–0.28C TWIP Steel During Cold Rolling[J]. Metallurgical and Materials Transactions A, 2012, 44: 911-922.

[8]

Su Y, Li L, Fu Ren–yu. Through–Thickness Texture Gradient in Hot–Rolled 25Mn–2.5Si–2Al TWIP Steel[J]. Journal of Iron and Steel Research International, 2013, 20(4): 46-53.

[9]

Joanna K, Wiktoria R, Małgorzata W, et al. Development of Microstructure and Texture in Fe–26Mn–3Si–3Al Alloy During Cold–Rolling and Annealing[J]. Journal of Alloys and Compounds, 2014, 615: S583-S586.

[10]

Tewary NK, Ghosh SK, Supriya B, et al. Influence of Cold Rolling on Microstructure, Texture and Mechanical Properties of Low Carbon High Mn TWIP Steel[J]. Materials Science & Engineering A, 2014, 615: 405-415.

[11]

XIONG R, FU R, SU Y, et al. Fracture Mechanism of TWIP Steel under Dynamic Tensile Condition[J]. Shanghai Metals, 2008, 30(5): 12-15.

[12]

Xiong R, Fu R, Su Y, et al. Tensile Properties of TWIP Steel at High Strain Rate[J]. Jour.nal of Iron and Steel Research. International, 2009, 16(1): 81-86.

[13]

Li D, Wei Y, LIU C, et al. Effects of High Strain Rate on Properties and Microstructure Evolution of TWIP Steel Subjected to Impact Loading[J]. Journal of Iron and Steel Research International, 2010, 17(6): 67-73.

[14]

Puspendu S, Sven C, Arpan D, et al. Stability of Austenite and Quasi–Adiabatic Heating During High–Strain–Rate Deformation of Twinning–Induced Plasticity Steels[J]. Scripta Materialia, 2010, 62: 5-8.

[15]

Fang X, Yang P, Lu F, et al. Dependence of Deformation Twinning on Grain Orientation and Texture Evolution of High Manganese TWIP Steels at Different Deformation Temperatures[J]. Journal of Iron and Steel Research International, 2011, 18(11): 46-52.

[16]

Tang Z, Wu Z, Zan N, et al. Microstructure Evolution and Deformation Behavior of High Manganese TRIP/TWIP Symbiotic Effect Steels under High–Speed Deformation[J]. Acta Metallurgica Sinica, 2011, 47(11): 1 426-1 433.

[17]

Barbier D, Favier V, Bolle B. Modeling the Deformation Textures and Microstructural Evolutions of a Fe–Mn–C TWIP Steel during Tensile and Shear Testing[J]. Materials Science and Engineering A, 2012, 540: 212-225.

[18]

Xiong Z, Ren X, Bao W, et al. Effect of High Temperature and High Strain Rate on the Dynamic Mechanical Properties of Fe–30Mn–3Si–4Al TWIP Steel[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(9): 835-841.

[19]

Xiong Z, Ren X, Shu J, et al. Effect of Temperature on Microstructure and Deformation Mechanism of Fe–30Mn–3Si–4Al TWIP Steel at Strain Rate of 700 s–1[J]. Journal of Iron and Steel Research, International, 2015, 22(2): 179-184.

[20]

Shen Y F, Jia N, Misra RDK, et al. Softening Behavior by Excessive Twinning and Adiabatic Heating at High Strain Rate in a Fe–20Mn–0.6C TWIP Steel[J]. Acta Materialia, 2016, 103: 229-242.

[21]

Allain S, Chateau J P, Dahmounb D, et al. Modeling of Mechanical Twinning in a High Manganese Content Austenitic Steel[J]. Materials Science and Engineering, 2004, 387–389: 272-276.

[22]

Hirsch J, Lücke K, Hatherly M. Overview No. 76: Mechanism of Deformation and Development of Rolling Textures in Polycrystalline f.c.c. Metals—III. The Influence of Slip Inhomogeneities and Twinning[J]. Acta Metall., 1988, 36(11): 2 905-2 927.

[23]

Venables J A. Deformation Twinning in fcc Material[C], 1963

[24]

Meyers M A, Vohringer O, Lubarda V A. The Onset of Twinning in Metals: a Constitutive Description[J]. Acta Mater., 2001, 14(49): 4 025-4 039.

[25]

Wu Z, Tang Z, Li H, et al. Effect of Strain Rate on Microstructure Evolution and Mechanical Behavior of a Low C High Mn TRIP/TWIP Steel[J]. Acta Metallurgica Sinica, 2012, 48(5): 593-600.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/