Effects of Y Content on the Microstructures and Mechanical Properties of Mg-5Zn-xY-0.6Zr Alloys

Siqi Yin , Zhiqiang Zhang , Xuan Liu , Zhenjia Zhu , Lei Bao , Qichi Le , Jianzhong Cui

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 138 -144.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 138 -144. DOI: 10.1007/s11595-019-2027-9
Metallic Materials

Effects of Y Content on the Microstructures and Mechanical Properties of Mg-5Zn-xY-0.6Zr Alloys

Author information +
History +
PDF

Abstract

Three as-cast and as-extruded Mg-5Zn-xY-0.6Zr (x=5 wt%, 8 wt%, 11 wt%) alloys were prepared, and the effects of Y content on the microstructures and mechanical properties of the alloys were investigated. The results show that the investigated Mg-Zn-Y-Zr alloys mainly consist of α-Mg, X-Mg12YZn and minor amount of W-Mg3Y2Zn3 phases. The volume fraction of X-Mg12YZn phase increases and that of W-Mg3Y2Zn3 phase decreases with the rising of Y content in the alloys. The as-extruded Mg-5Zn-11Y-0.6Zr alloy owns the optimal ultimate tensile strength and yield strength of 429 and 351 MPa, respectively. Mg-5Zn-5Y-0.6Zr alloy owns the maximum elongation of 13.6%.

Keywords

Mg-Zn-Y-Zr alloy / indirect extrusion / ternary phase / mechanical property

Cite this article

Download citation ▾
Siqi Yin, Zhiqiang Zhang, Xuan Liu, Zhenjia Zhu, Lei Bao, Qichi Le, Jianzhong Cui. Effects of Y Content on the Microstructures and Mechanical Properties of Mg-5Zn-xY-0.6Zr Alloys. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(1): 138-144 DOI:10.1007/s11595-019-2027-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang X J, Xu D K, Wu R Z, et al. What is Going on in Magnesium Alloys[J]. Mater. Sci. Technol., 2018, 34: 245-247.

[2]

Mordike B L, Ebert T. Magnesium: Properties Applications Potential[ J]. Mater. Sci. Eng. A, 2001, 302(1): 37-45.

[3]

Xu D K, Liu L, Xu Y B, et al. The Influence of Element Y on the Mechanical Properties of the As–extruded Mg–Zn–Y–Zr Alloys[J]. J. Alloys Compd., 2006, 426: 155-161.

[4]

Pan H C, Ren Y P, Fu H, et al. Recent Developments in Rare–earth Free Wrought Magnesium Alloys Having High Strength: A Review[J]. J. Alloys Compd., 2016, 663: 321-331.

[5]

Yang Q S, Jiang B, Pan H C, et al. Influence of Different Extrusion Processes on Mechanical Properties of Magnesium Alloy[J]. J. Magn. Alloy., 2014, 2: 220-224.

[6]

Chapuis A, Driver J H. Temperature Dependency of Slip and Twinning in Plane Strain Compressed Magnesium Single Crystals[J]. Acta. Mater., 2011, 59: 1 986-1 994.

[7]

Jiang M, Su X L, Li H X, et al. The Phase Equilibria and Thermal Stability of the Long–period Stacking Ordered Phase in the Mg–Cu–Y System[J]. J. Alloys Compd., 2014, 593: 141-147.

[8]

Ferro R, Saccone A, Borzone G. Rare Earth Metals in Light Alloys[J]. J. Rare Earth., 1997, 15(1): 45-61.

[9]

Polmear I J. Magnesium Alloys and Applications[J]. Materials Science& Technology, 1994 1-16.

[10]

Leontis T E. Effect of Rare–Earth Metals on the Properties of Extruded Magnesium[J]. Metals, 1951, 3(11): 987-993.

[11]

Suzuki M, Moue R, Sugihara M. Effects of Yttrium on Creep Behavior and Deformation Substructures of Magnesium[C], 2000

[12]

Luo Z P, Song D Y, Zhang S Q. Strengthening Effects of Rare Earths on Wrought Mg–Zn–Zr–RE Alloys[J]. J. Alloys Compd., 1995, 230: 109-114.

[13]

Xu D K, Tang W N, Liu L, et al. Effect of Y Concentration on the Microstructure and Mechanical Properties of As–cast Mg–Zn–Y–Zr Alloys[ J]. J. Alloys Compd., 2007, 432(1–2): 129-134.

[14]

Zhang Z Q, Liu X, Hu W Y, et al. Microstructures, Mechanical Properties and Corrosion Behaviors of Mg–Y–Zn–Zr Alloys with Specific Y/Zn Mole Ratios[J]. J. Alloys Compd., 2015, 624: 116-125.

[15]

Drits M E, Sviderskaya Z A, Rokhlin L L, et al. Effect of Alloying on the Properties of Mg–Gd Alloys[J]. Technical Information, 1979, 11: 62-64.

[16]

Anyanwu I A, Kamado S, Kojima Y. Aging Characteristics and High Temperature Tensile Properties of Mg–Gd–Y–Zr Alloys[J]. Mater. Trans., 2001, 42(7): 1 206-1 211.

[17]

Xu H, Zhang X, Wang C S, et al. Corrosion Mechanism and Corrosion Model of Mg–Y Alloy in NaCl Solution[J]. J. Wuhan. Univ. Technol., 2016, 30(5): 26-37.

[18]

Yi S, Park E S, Ok J B I P T P M i t M T System[J], et al. Mater. Sci. Eng. A, 2001, 300: 312-315.

[19]

Luo Z P, Sui H X, Zhang S Q. On the Stable Mg–Zn–Y Quasicrystals[ J]. Metall. Mater. Trans. A, 1996, 27(7): 1 779-1 784.

[20]

Xu D K, Tang W N, Liu L, et al. Effect of W–phase on the Mechanical Properties of As–cast Mg–Zn–Y–Zr Alloys[J]. J. Alloys Compd., 2008, 461(1–2): 248-252.

[21]

Singly A, Tsai A P. On the Cubic W Phase and Its Relationship to the Icosahedral Phase in Mg–Zn–Y Alloys[J]. Scr. Mater., 2003, 49(2): 143-148.

[22]

Luo Z, Zhang S, Tang Y, et al. Quasicrystals in As–cast Mg–Zn–RE Alloys[ J]. Scr. Metall. Mater., 1993, 28(12): 1 513-1 518.

[23]

Bae D H, Lee M H, Kim K T, et al. Application of Quasicrystalline Particles as a Strengthening Phase in Mg–Zn–Y Alloys[J]. J. Alloys Compd., 2002, 342(1–2): 445-450.

[24]

Luo S Q, Tang A T, Pan F S, et al. Effect of Mole Ratio of Y to Zn on Phase Constituent of Mg–Zn–Zr–Y Alloys[J]. T. Nonferr. Metal. Soc., 2011, 21: 795-800.

[25]

Smith W F. Structure and Properties of Engineering Alloys[M], 1993 New York: McGraw–Hill.

[26]

Huang Z H, Liang S M, Chen R S, et al. Solidification Pathways and Constituent Phases of Mg–Zn–Y–Zr Alloys[J]. J. Alloys Compd., 2009, 468: 170-178.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/