Highly Efficient Removal of Organic Dyes by Novel As-synthesized AgBr/montmorillonite Composite

Jianchang Lü , Zhenlu Li , Zheng Hu , Ming Ge

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 35 -40.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 35 -40. DOI: 10.1007/s11595-019-2011-4
Advanced Materials

Highly Efficient Removal of Organic Dyes by Novel As-synthesized AgBr/montmorillonite Composite

Author information +
History +
PDF

Abstract

A facile deposition method has been developed for large-scale synthesis of visible-light-driven AgBr/montmorillonite composite catalyst for the first time. The as-synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and Brunauer-Emmett-Teller (BET) surface area analysis, respectively. Through the combined action of adsorption and photodegradation, the as-prepared AgBr/montmorillonite composite exhibited a higher removal efficiency for rhodamine B (RhB) than that of Na-montmorillonite and AgBr. For the methyl orange (MO) removal, the AgBr/montmorillonite composite possessed a superior photocatalytic performance compared with Namontmorillonite and AgBr. The enhanced photocatalytic activity of AgBr/montmorillonite composite can be attributed to the effective separation of the electron-hole pairs. In AgBr/montmorillonite suspension, the superoxide radicals are the main reactive oxygen species for dye degradation under visible light illumination.

Keywords

AgBr/montmorillonite / adsorption / photocatalysis / dye / photocatalytic mechanism

Cite this article

Download citation ▾
Jianchang Lü, Zhenlu Li, Zheng Hu, Ming Ge. Highly Efficient Removal of Organic Dyes by Novel As-synthesized AgBr/montmorillonite Composite. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(1): 35-40 DOI:10.1007/s11595-019-2011-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mahmoodi N M, Hayati B, Arami M, et al. Adsorption of Textile Dyes on Pine Cone from Colored Wastewater: Kinetic, Equilibrium and Thermodynamic Studies[J]. Desalination, 2011, 268(1–3): 117-125.

[2]

Bauer C, Jacques P, Kalt A. Photooxidation of an Azo Dye Induced by Visible Light Incident on the Surface of TiO2[J]. J. Photochem, 2001 Photobiol. A: Chem.. 87-92.

[3]

Chong M N, Jin B, Chow C W K, et al. Recent Developments in Photocatalytic Water Treatment Technology: A Review[J]. Water Res., 2010, 44(10): 2 997-3 027.

[4]

Wu S Y, Zheng H, Wu Y Y, et al. Hydrothermal Synthesis and Visible Light Photocatalytic Activity Enhancement of BiPO4/Ag3PO4 Composites for Degradation of Typical Dyes[J]. Ceram. Int., 2014, 40(9): 14 613-14 620.

[5]

Wang H, Gao J, Guo T Q, et al. Facile Synthesis of AgBr Nanoplates with Exposed {111} Facets and Enhanced Photocatalytic Properties[J]. Chem. Comm., 2012, 48(2): 275-277.

[6]

Wang H, Li Y, Li C, et al. Facile Synthesis of AgBr Nanocubes for Highly Efficient Visible Light Photocatalysts[J]. Cryst. Eng. Comm., 2012, 14(22): 7 563-7 566.

[7]

Dai K, Lu L H, Zhu G P, et al. A Scalable Synthesis Technique of Novel AgBr Microcrystal and Its Visible Light Photocatalytic Performance[ J]. Mater. Let., 2012, 87: 94-96.

[8]

Wang H, Lang X F, Gao J, et al. Polyhedral AgBr Microcrystals with an Increased Percentage of Exposed {111} Facets as a Highly Efficient Visible–Light Photocatalyst[J]. Chem.–A Eur. J., 2012 620-4 626.

[9]

Araujo P Z, Luca V, Bozzano P B, et al. Aerosol–Assisted Production of Mesoporous Titania Microspheres with Enhanced Photocatalytic Activity: The Basis of an Improved Process[J]. ACS Appl. Mater. Inter., 2010 663-1 673.

[10]

Xu C Q, Wu H H, Gu F L. Efficient Adsorption and Photocatalytic Degradation of Rhodamine B under Visible Light Irradiation over BiOBr/Montmorillonite Composites[J]. J.Hazar. Mater., 2014, 275: 185-192.

[11]

Ge M, Hu Z. Novel Magnetic AgBr/NiFe2O4 Composite with Enhanced Visible Light Photocatalytic Performance[J]. Ceram. Int., 2016, 42(5): 6 510-6 514.

[12]

Chen J J, Zhu J X, Da Z L, et al. Improving the Photocatalytic Activity and Stability of Graphene–Like BN/AgBr Composites[J]. Appl. Surf. Sci., 2014, 313: 1-9.

[13]

Wang D S, Zhao M M, Luo Q Z, et al. An Efficient Visible–Light Photocatalyst Prepared by Modifying AgBr Particles with a Small Amount of Activated Carbon[J]. Mater. Res. Bull., 2016, 76: 402-410.

[14]

Li T T, He Y M, Lin H J, et al. Synthesis, Characterization and Photocatalytic Activity of Visible–Light Plasmonic Photocatalyst AgBr–Sm–VO4[J]. Appl. Catal. B: Environ., 2013, 138–139: 95-103.

[15]

Lei S M, Guo G L, Xiong B H, et al. Disruption of Bacterial Cells by Photocatalysis of Montmorillonite Supported Titanium Dioxide [J]. J. Wuhan Univ. Technol.–Mat. Sci. Edit., 2009, 24(4): 557-561.

[16]

Nuzzo A, Piccolo A. Enhanced Catechol Oxidation by Heterogeneous Biomimetic Catalysts Immobilized on Clay Minerals[J]. J.Mol. Catal. A: Chem., 2013, 371: 814.

[17]

Sharma P, Borah D J, Das P, et al. Cationic and Anionic Dye Removal from Aqueous Solution Using Montmorillonite Clay: Evaluation of Adsorption Parameters and Mechanism[J]. Desalin. Water Treat., 2016, 57(18): 8 372-8 388.

[18]

Wang Z H, Xu Q Q, Meng T, et al. Preparation and Characterization of CdS/TiO2–Mt Composites with Enhanced Visible Light Photocatalytic Activity[J]. Energy Environ. Focus, 2015, 4(2): 149-156.

[19]

Patil S P, Shrivastava V S, Sonawane G H, et al. Synthesis of Novel Bi2O3–Montmorillonite Nanocomposite with Enhanced Photocatalytic Performance in Dye Degradation[J]. J. Environ.Chem. Eng., 2015, 3: 2 597-2 603.

[20]

Zhao G Y, Liu L J, Li J R, et al. Efficient Removal of Dye MB: Through the Combined Action of Adsorption and Photodegradation from NiFe2O4/Ag3PO4[J]. J. Alloy. Comp., 2016, 664: 169-174.

[21]

Zhou L M, Chen H, Jiang X H, et al. Modification of Montmorillonite Surfaces Using a Novel Class of Cationic Gemini Surfactants[J]. J.Colloid. Inter. Sci., 2009, 332: 16-21.

[22]

Yang Y X, Guo W, Guo Y N, et al. Fabrication of Z–scheme Plasmonic Photocatalyst Ag@AgBr/g–C3N4 with Enhanced Visible–Light Photocatalytic Activity[J]. J. Hazar. Mater., 2014, 271: 150-159.

[23]

Ma J F, Liu Q, Zhu L F, et al. Visible Light Photocatalytic Activity Enhancement of Ag3PO4 Dispersed on Exfoliated Bentonite for Degradation of Rhodamine B[J]. Appl. Catal. B: Environ., 2016, 182: 26-32.

[24]

Xu H, Yan J, Xu Y G, et al. Novel Visible–Light–Driven AgX/Graphite–Like C3N4(X=Br, I) Hybrid Materials with Synergistic Photocatalytic Activity[J]. Appl. Catal. B: Environ., 2013, 129: 182-193.

[25]

Zhu Q, Wang W S, Lin L, et al. Facile Synthesis of the Novel Ag3VO4/AgBr/Ag Plasmonic Photocatalyst with Enhanced Photocatalytic Activity and Stability[J]. J. Phys. Chem. C, 2013, 117: 5 894-5 900.

[26]

Sun S M, Wang W Z, Jiang D, et al. Bi2WO6 Quantum Dot–Intercalated Ultrathin Montmorillonite Nanostructure and Its Enhanced Photocatalytic Performance[J]. Nano Res., 2014, 7(10): 1 497-1 506.

[27]

Hoyen H A Jr, Cole R M. Temperature Dependence of the Point of Zero Charge of Silver Halides Using a Streaming Current Detector[J]. J.Colloid. Inter. Sci., 1972, 41(1): 93-96.

[28]

Xiang Q J, Yu J G, Wang W Q, et al. Nitrogen Self–Doped Nanosized TiO2 Sheets with Exposed {001} Facets for Enhanced Visible–Light Photocatalytic Activity[J]. Chem. Comm., 2011, 47(24): 6 906-6 908.

[29]

Wang W S, Du H, Wang R X, et al. Heterostructured Ag3PO4/AgBr/Ag Plasmonic Photocatalyst with Enhanced Photocatalytic Activity and Stability Under Visible Light[J]. Nanoscale, 2013, 5(8): 3 315-3 321.

[30]

Shi L, Liang L, Ma J, et al. Highly Efficient Visible Light–Driven Ag/AgBr/ZnO Composite Photocatalyst for Degrading Rhodamine B[J]. Ceram. Int., 2014, 40: 3 495-3 502.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/