Phase Structure, Microstructure and Electrical Properties of K xNa(1-x)NbO3 Piezoelectric Ceramics with Different K/Na Ratio

Jianchao Chen , Wei Wu , Shi Su , Jishun Yu , Xinrong Lei , Pei Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 30 -34.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 30 -34. DOI: 10.1007/s11595-019-2010-5
Advanced Materials

Phase Structure, Microstructure and Electrical Properties of K xNa(1-x)NbO3 Piezoelectric Ceramics with Different K/Na Ratio

Author information +
History +
PDF

Abstract

The K xNa(1-x)NbO3 (x = 0.45, 0.46, 0.47, 0.48, 0.49, 0.50) lead-free piezoelectric ceramics was fabricated by conventional solid-state sintering method. It was found that the ratio of alkaline metal would affect the microstructure, bulk density, and optimum sintering temperatures of ceramics. Meanwhile, the electrical properties were also influenced by modulating the K/Na ratio, exhibiting corresponding composition-dependent properties. The optimum electrical properties of K xNa(1-x)NbO3 such as piezoelectric constant d 33 = 115 pC/N, mechanical quality factor Q m = 20, Curie temperature T c = 365 °C, ε T 330= 588.1, dielectric loss tan δ = 0.024, bulk density (ρ) = 3.08 g/cm3, remnant polarization (P r) = 8.87 μC/cm2 and coercive field (E c) = 13.79 kV/cm were obtained at x = 0.46.

Keywords

lead-free piezoelectric ceramics / solid-state sintering / K/Na ratio / electrical properties

Cite this article

Download citation ▾
Jianchao Chen, Wei Wu, Shi Su, Jishun Yu, Xinrong Lei, Pei Zhao. Phase Structure, Microstructure and Electrical Properties of K xNa(1-x)NbO3 Piezoelectric Ceramics with Different K/Na Ratio. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(1): 30-34 DOI:10.1007/s11595-019-2010-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ishihara S, Kakimoto K, Kagomiya I. Densification of(Na,K)NbO3 Piezoelectric Ceramics by Two–Step Mixing Process[J]. J. Mater. Sci., 2011, 46: 3 822-3 827.

[2]

Rubio–Marcos F, Romero J J, Navarro–Rojero M G, et al. Effect of ZnO on the Structure, Microstructure and Electrical Properties of KNN–Modified Piezoceramics[J]. J. Eur. Ceram. Soc., 2009, 29: 3 045-3 052.

[3]

Lim J B, Jeong Y H, Kim M H, et al. Effect of K/Na Ratio on Piezoelectric Properties of Modified–(K1−xNax)NbO3 “Hard” Lead–Free Piezoelectrics. Ceram[J]. Int., 2012, 38: 2 605-2 608.

[4]

Liu J, Zhu J, Wang M, et al. Effects of K/Na Ratio on the Phase Structure and Electrical Properties of 0.98(KxNa1−x)NbO3–0.02BiScO3 Lead–Free Ceramics. Ceram[J]. Int, 38. Supplement., 2012

[5]

Ichiki M, Zhang L, Tanaka M, et al. Electrical Properties of Piezoelectric Sodium–Potassium Niobate[J]. J. Eur. Ceram. Soc., 2004, 24: 1 693-1 697.

[6]

Huang R, Zhao Y, Liu R, et al. Effects of Sintering Temperature and Alkaline Elements Excess on the Structure and Electrical Properties of(K0.462Na0.48Li0.058)1+xNbO3 Lead–Free Piezoelectric Ceramics[J]. Curr. Appl. Phys., 2011, 11: 1 205-1 209.

[7]

Zuo R, Xu Z, Li L. Dielectric and Piezoelectric Properties of Fe2O3–Doped(Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 Lead–Free Ceramics[J]. J. Phys. Chem. Solids., 2008, 69: 1 728-1 732.

[8]

Saito Y, Takao H, Tani T, et al. Lead–Free Piezoceramic[J]. Nature, 2004, 432: 84-87.

[9]

Singh K, Lingwal V, Bhatt S C, et al. Dielectric Properties of Potassium Sodium Niobate Mixed System[J]. Mater. Res. Bul., 2001, 36: 2 365-2 374.

[10]

Egerton L, Dillon D M. Piezoelectric and Dielectric Properties of Ceramics in the System Potassium–Sodium Niobate[J]. J. Am. Ceram. Soc., 1959, 42: 438-442.

[11]

Tennery V J, Hang K W. Thermal and XRay Diffraction Studies of the NaNbO3–KNbO3 System[J]. J. Appl. Phys., 1968, 39: 4 749-4 753.

[12]

Zhao P, Zhang B P, Li J F. High Piezoelectric d33 Coefficient in Li–Modified Lead–Free(Na,K)NbO3 Ceramics Sintered at Optimal Temperature[J]. Appl. Phys. Lett., 2007, 90: 242 909.

[13]

Kim M S, Lee D S, Park E C, et al. Effect of Na2O Additions on the Sinterability and Piezoelectric Properties of Lead–Free 95(Na0.5K0.5) NbO3–5LiTaO3 Ceramics[J]. J. Eur. Ceram. Soc., 2007, 27: 4 121-4 124.

[14]

Zhao P, Tu R, Goto T, et al. Effect of Ta Content on Phase Structure and Electrical Properties of Piezoelectric Lead–Free [(Na0.535K0.480)0. 942Li0.058](Nb1−xTax)O3 Ceramics[J]. J. Am. Ceram. Soc., 2008, 91: 3 440-3 443.

[15]

Li J F, Wang K, Zhang B P, et al. Ferroelectric and Piezoelectric Properties of Fine–Grained Na0.5K0.5NbO3 Lead–Free Piezoelectric Ceramics Prepared by Spark Plasma Sintering[J]. J. Am. Ceram. Soc., 2006, 89: 706-709.

[16]

Gu H, Zhu K, Pang X, et al. Synthesis of(K, Na)(Nb, Ta)O3 Lead–Free Piezoelectric Ceramic Powders by High Temperature Mixing Method under Hydrothermal Conditions[J]. Ceram. Int., 2012, 38: 1 807-1 813.

[17]

Penn S J, Alford N M, Templeton A, et al. Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina[J]. J. Am. Ceram. Soc., 1997, 80: 1 885-1 888.

[18]

Dorey R A, Stringfellow S B, Whatmore R W. Effect of Sintering Aid and Repeated Sol Infiltrations on the Dielectric and Piezoelectric Properties of a PZT Composite Thick Film[J]. J. Eur. Ceram. Soc., 2002, 22: 2 921-2 926.

[19]

Guo Y, Kakimoto K, Ohsato H. Structure and Electrical Properties of Lead–Free(Na0.5K0.5)NbO3–BaTiO3 Ceramics[J]. Jpn. J. Appl. Phys., 2004, 43: 6 662-6 666.

AI Summary AI Mindmap
PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/