Towards Improvement of Photovoltaic Performance of Aqueous Dye-sensitized Solar Cells by Tungsten-doped Mesoporous Nanobeads TiO2 Working Electrode

Yanrong Guo , Tingting Zou , Qin Cheng , Binqing Jiao , Xiaoli Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 17 -22.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 17 -22. DOI: 10.1007/s11595-019-2008-z
Advanced Materials

Towards Improvement of Photovoltaic Performance of Aqueous Dye-sensitized Solar Cells by Tungsten-doped Mesoporous Nanobeads TiO2 Working Electrode

Author information +
History +
PDF

Abstract

Tungsten doped (W-doped) TiO2 mesoporous nanobeads, possessing high surface area and superior scattering effect, were used for photoanode preparation. The W-doping would induce a positive shift of the TiO2 conduction band, and enhance the driving force for electron injection and collection efficiencies. The electrochemical impedance spectra indicated a retarded charge recombination and increased electron diffusion length after W-doping. By fine-tuning the W-doping concentration to 0.25%, aqueous DSCs produced a significant improved the open circuit voltage of 712 mV and a short circuit current of 7.05 mA·cm-2, leading to an overall increased power conversion efficiency of 3.40% at 1 000 W·m-2 simulated irradiation, which is roughly 25% enhancement compared to that without W-doping photoanode.

Keywords

tungsten-doping / dye-sensitized solar cells / aqueous electrolyte / conduction band

Cite this article

Download citation ▾
Yanrong Guo, Tingting Zou, Qin Cheng, Binqing Jiao, Xiaoli Zhang. Towards Improvement of Photovoltaic Performance of Aqueous Dye-sensitized Solar Cells by Tungsten-doped Mesoporous Nanobeads TiO2 Working Electrode. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(1): 17-22 DOI:10.1007/s11595-019-2008-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Daeneke T, Mozer A J, Kwon T H, et al. Dye Regeneration and Charge Recombination in Dye–sensitized Solar Cells with Ferrocene Derivatives as Redox Mediators[J]. Energy Environ. Sci., 2012, 5(5): 7 090-7 099.

[2]

Stergiopoulos T, Falaras P. Minimizing Energy Losses in Dye–Sensitized Solar Cells Using Coordination Compounds as Alternative Redox Mediators Coupled with Appropriate Organic Dyes[J]. Adv. Energy Mater., 2012, 2(6): 616-627.

[3]

Jennings J R, Wang Q. Influence of Lithium Ion Concentration on Electron Injection, Transport, and Recombination in Dye–Sensitized Solar Cells[J]. J. Phys. Chem. C, 2009, 114(3): 1 715-1 724.

[4]

Zheng Y Z, Tao X, Hou Q, et al. Iodine–Doped ZnO Nanocrystalline Aggregates for Improved Dye–Sensitized Solar Cells[J]. Chem. Mater., 2010, 23(1): 3-5.

[5]

Yu J, Yang Y L, Fan R Q, et al. Mechanism of Performance Enhancement via Fluorine Doped Titanium Dioxide Nanoparticles in Dye Sensitized Solar Cells[J]. J. Flu. Chem., 2015, 176: 71-77.

[6]

Su T, Yang Y, Na Y, et al. An Insight into the Role of Oxygen Vacancy in Hydrogenated TiO2 Nanocrystals in the Performance of Dye–Sensitized Solar Cells[J]. ACS Appl. Mater. Interfaces, 2015, 7(6): 3 754-3 763.

[7]

Hao L, Bai F Q, Kong C P, et al. Theoretical Studies of Heteroatom–doping in TiO2 to Enhance the Electron Injection in Dye–sensitized Solar Cells[J]. RSC Adv., 2015, 5(97): 79 868-79 873.

[8]

Liu Y, Hagfeldt A, Xiao X R, et al. Investigation of Influence of Redox Species on the Interfacial Energetics of a Dye–sensitized Nanoporous TiO2 Solar Cell[J]. Solar Energy Materials and Solar Cells, 1998, 55(3): 267-281.

[9]

Wei L, Yang Y, Xia X, et al. Band Edge Movement in Dye Sensitized Sm–doped TiO2 Solar Cells: a Study by Variable Temperature Spectroelectrochemistry[ J]. RSC Adv., 2015, 5(86): 70 512-70 521.

[10]

Feng X, Shankar K, Paulose M, et al. Tantalum–Doped Titanium Dioxide Nanowire Arrays for Dye–Sensitized Solar Cells with High Open–Circuit Voltage[J]. Angew. Chem. Int. Ed., 2009, 48(43): 8 095-8 098.

[11]

Moradzaman M, Mohammadi M R, Nourizadeh H. Efficient Dye–sensitized Solar Cells Based on CNTs and Zr–doped TiO2 Nanoparticles[J]. Materials Science in Semiconductor Processing, 2015, 40: 383-390.

[12]

Horie Y, Daizaka K, Mukae H, et al. Enhancement of Photocurrent by Columnar Nb–doped TiO2 Compact Layer in Dye Sensitized Solar Cells with Low Temperature Process of DC Sputtering[J]. Electrochimica Acta, 2016, 187: 348-357.

[13]

Duan Y, Fu N, Zhang Q, et al. Influence of Sn Source on the Performance of Dye–sensitized Solar Cells Based on Sn–doped TiO2 Photoanodes: A Strategy for Choosing an Appropriate Doping Source[J]. Electrochimica Acta, 2013, 107: 473-480.

[14]

Xu M, Da P, Wu H, et al. Controlled Sn–doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion[J]. Nano Letter, 2012, 12(3): 1 503-1 508.

[15]

Bisquert J. Physical Electrochemistry of Nanostructured Devices[J]. Phys. Chem. Chem. Phys., 2008, 10(1): 49-72.

[16]

Park J T, Chi W S, Jeon H, et al. Improved Electron Transfer and Plasmonic Effect in Dye–sensitized Solar Cells with Bi–functional Nbdoped TiO2/Ag Ternary Nanostructures[J]. Nanoscale, 2014, 6(5): 2 718-2 729.

[17]

Xiang W C, Marlow J, Bäuerle P, et al. Aqueous p–type Dye–sensitized Solar Cells Based on a tris(1, 2–diaminoethane)cobalt(II)/(III) Redox Mediator[J]. Green Chem., 2016, 18: 6 659-6 665.

[18]

Zhang X, Liu F, Huang Q L, et al. Dye–Sensitized W–Doped TiO2 Solar Cells with a Tunable Conduction Band and Suppressed Charge Recombination[ J]. J. Phys. Chem. C, 2011, 115(25): 12 665-12 671.

[19]

Tong Z, Peng T, Sun W, et al. Introducing an Intermediate Band into Dye–Sensitized Solar Cells by W6+ Doping into TiO2 Nanocrystalline Photoanodes[J]. J. Phys. Chem. C, 2014, 118(30): 16 892-16 895.

[20]

Cant A M, Huang F, Zhang X L, et al. Tailoring the Conduction Band of Titanium Oxide by Doping Tungsten for Efficient Electron Injection in a Sensitized Photoanode[J]. Nanoscale, 2014, 6(7): 3 875-3 880.

[21]

Xiang W, Huang F, Cheng Y B, et al. Aqueous Dye–sensitized Solar Cell Electrolytes Based on the Cobalt(II)/(III) Tris(bipyridine) Redox Couple[J]. Energy Environ. Sci., 2013, 6(1): 121-127.

[22]

Dong C, Xiang W, Huang F, et al. Controlling Interfacial Recombination in Aqueous Dye–Sensitized Solar Cells by Octadecyltrichlorosilane Surface Treatment[J]. Angew. Chem. Int. Ed., 2014, 53(27): 6 933-6 937.

[23]

Bella F, Galliano S, Falco M, et al. Unveiling Iodine–based Electrolytes Chemistry in Aqueous Dye–sensitized Solar Cells[J]. Chem. Sci., 2016, 7(8): 4 880-4 890.

[24]

Bella F, Gerbaldi C, Barolo C, et al. Aqueous Dye–sensitized Solar Cells[J]. Chem. Soc. Rev., 2015, 44(11): 3 431-3 473.

[25]

Zhang X L, Chen Y, Cant A M, et al. Crystalline TiO2 Nanorod Aggregates: Template–Free Fabrication and Efficient Light Harvesting in Dye–Sensitized Solar Cell Applications[J]. Part. Part. Syst. Charact., 2013, 30(9): 754-758.

[26]

Zhang X L, Huang F, Chen Y, et al. An Over 10% Enhancement of Dye–Sensitized Solar Cell Efficiency by Tuning Nanoparticle Packing[ J]. RSC Adv., 2013, 3(38): 17 003-17 006.

[27]

Xiang W, Chen D, Caruso R A, et al. The Effect of the Scattering Layer in Dye–Sensitized Solar Cells Employing a Cobalt–Based Aqueous Gel Electrolyte[J]. ChemSusChem, 2015, 8(21): 3 704-3 711.

[28]

Bisquert J. Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer[J]. J. Phys. Chem. B, 2002, 106(2): 325-333.

[29]

Dong C, Xiang W, Huang F, et al. Titania Nanobundle Networks as Dye–sensitized Solar Cell Photoanodes[J]. Nanoscale, 2014, 6(7): 3 704-3 711.

[30]

Zhang X L, Zhang Z, Chen D, et al. Sensitization of Nickel Oxide: Improved Carrier Lifetime and Charge Collection by Tuning Nanoscale Crystallinity[J]. Chem. Commun., 2012, 48(79): 9 885-9 887.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/