Effective Diffusion Energy Barriers with the Boltzmann Distribution Assumption

Rui Tu , Zhu Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 1 -5.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (1) : 1 -5. DOI: 10.1007/s11595-019-2005-2
Advanced Materials

Effective Diffusion Energy Barriers with the Boltzmann Distribution Assumption

Author information +
History +
PDF

Abstract

We derived revised effective diffusion energy barriers following the Boltzmann distribution assumption for impurity atoms in a bulk material under the impact of various kinds of point defects to reveal the insights of migration mechanisms. The effective diffusion energy barriers of copper impurities in bulk zirconium were calculated through the first principle method under the presented hypothesis. Our results (ΔE || =1.27 eV, ΔE =1.31 eV) agreed well with the experimental results (ΔE || =1.54 eV, ΔE =1.60 eV), which validated bulk diffusion as the major mechanism for copper diffusion in zirconium. The effective diffusion energy barriers could be used for estimating whether the defects will accelerate the diffusion or slow them down by acting as traps of the impurity atoms. On the other hand, the first principle results of the impurity diffusion via defects could be further used as inputs of larger scale computational simulations, such as MC (Monte Carlo) or Phase Field calculations.

Keywords

boltzmann distribution / diffusion energy barrier / point defect / first principle calculation NEB method

Cite this article

Download citation ▾
Rui Tu, Zhu Wang. Effective Diffusion Energy Barriers with the Boltzmann Distribution Assumption. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(1): 1-5 DOI:10.1007/s11595-019-2005-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Azevedo C. Selection of Fuel Cladding Material for Nuclear Fission Reactors[J]. Eng. Fail. Anal., 2011, 18(8): 1 943-1 962.

[2]

Garlick A, Wolfenden P. Fracture of Zirconium Alloys in Iodine Vapors[ J]. J. Nucl. Mater., 1971, 41(3): 274-292.

[3]

Schuster I, Lemaignan C. Influence of Texture on Iodine–Induced Stress Corrosion Cracking of Zircaloy–4 Cladding Tubes[J]. J. Nucl. Mater., 1992, 189(2): 157-166.

[4]

Sidky P. Iodine Stress Corrosion Cracking of Zircaloy Reactor Cladding: Iodine Chemistry(A Review)[J]. J. Nucl. Mater., 1998, 256(1): 1-17.

[5]

Lewis B, Thompson W, Kleczek M, et al. Modelling of Iodine–Induced Stress Corrosion Cracking in CANDU Fuel[J]. J. Nucl. Mater., 2011, 408(3): 209-223.

[6]

Malherbe J B. Diffusion of Fission Products and Radiation Damage in SiC[J]. J. Phys. D: App. Phys., 2013, 46(47): 473 001

[7]

Kalilainen J, Krkel T, Zilliacus R, et al. Chemical Reactions of Fission Product Deposits and Iodine Transport in Primary Circuit Conditions [J]. Nucl. Eng. Des., 2014, 267: 140-147.

[8]

Hood G M, Schultz R J. Copper Diffusion in Single–Crystal α–Zr[J]. Phys. Rev. B, 1975, 11: 3 780.

[9]

Audren A, Benyagoub A, Thome L, et al. Ion Implantation of Iodine into Silicon Carbide: Influence of Temperature on The Produced Damage and on The Behavior[J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2008, 266(12): 2 810-2 813.

[10]

Friedland E, van der Berg N, Malherbe J, et al. Study of Iodine Diffusion in Silicon Carbide[J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2010, 268: 2 892-2 896.

[11]

Friedland E, van der Berg N, Malherbe J, et al. Investigation of Silver and Iodine Transport Through Silicon Carbide Layers Prepared for Nuclear Fuel Element Cladding[J]. J. Nucl. Mater., 2011, 410: 24-31.

[12]

Dwaraknath S, Was G. The Diffusion of Cesium, Strontium, and Europium in Silicon Carbide[J]. J. Nucl. Mater., 2016, 476: 155-167.

[13]

Dwaraknath S, Was G. Radiation Enhanced Diffusion of Cesium, Strontium, and Europium in Silicon Carbide[J]. J. Nucl. Mater., 2016, 474: 76-87.

[14]

Desgranges L, Riglet–Martial C, Aubrun I, et al. Evidence of Tellurium Iodide Compounds in A Power–Ramped Irradiated {UO2} Fuel Rod[J]. J. Nucl. Mater., 2013, 437: 409-414.

[15]

Wimmer E, Najafabadi R, Young G A, et al. Ab initio Calculations for Industrial Materials Engineering: Successes and Challenges[J]. J. Phys–Condens Mat., 2010, 22(38): 384 215

[16]

Khalil S, Swaminathan N, Shrader D, et al. Diffusion of Ag along Σ3 Grain Boundaries in 3C–SiC[J]. Phys. Rev. B, 2011, 84: 214 104.

[17]

Rabone J, López–Honorato E, Uffelen P V. Silver and Cesium Diffusion Dynamics at the β–SiC Σ5 Grain Boundary Investigated with Density Functional Theory Molecular Dynamics and Metadynamics[J]. Phys. Chem. A, 2014, 118: 915-926.

[18]

Deng J, Morgan D, Szlufarska I. Kinetic Monte Carlo Simulation of the Effective Diffusivity in Grain Boundary Networks[J]. Comput. Mater. Sci., 2014, 93: 36-45.

[19]

Deng J, Ko H, Demkowicz P, et al. Grain Boundary Diffusion of Ag through Polycrystalline SiC in {TRISO} Fuel Particles[J]. J. Nucl. Mater., 2015, 467: 332-340.

[20]

Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev., 1964, 136: B864-B871.

[21]

Kohn W, Sham L J. Self–Consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev., 1965, 140: A1 133-A1 138.

[22]

Rossi M L, Taylor C D. First–Principles Insights into The Nature of Zirconium–Iodine Interactions and The Initiation of Iodine–Induced Stress–Corrosion Cracking[J]. J. Nucl. Mater., 2015, 458: 1-10.

[23]

Christensen M, Angeliu T, Ballard J, et al. Effect of Impurity and Alloying Elements on Zr Grain Boundary Strength From First–Principles Computations[J]. J. Nucl. Mater., 2010, 404(2): 121-127.

[24]

Klipfel M, Uffelen P V. Ab initio Modelling of Volatile Fission Products in Uranium Mononitride[J]. J. Nucl. Mater., 2012, 422(1): 137-142.

[25]

Wu H H, Trinkle D R. Direct Diffusion through Interpenetrating Networks: Oxygen in Titanium[J]. Phys. Rev. Lett., 2011, 107: 045 504.

[26]

Wu H H, Wisesa P, Trinkle DR. Oxygen Diffusion in HCP Metals From First Principles[J]. Phys. Rev. B, 2016, 94: 014 307.

[27]

Shrader D, Szlufarska I, Morgan D. Cs Diffusion in Cubic Silicon Carbide[J]. J. Nucl. Mater., 2012, 421(1): 89-96.

[28]

Shrader D, KhalilS M, Gerczak T, et al. Ag Diffusion in Cubic Silicon Carbide[J]. J. Nucl. Mater., 2011, 408(3): 257-271.

[29]

Rurali R, Hernández E, Godignon P, et al. First–Principles Studies of the Diffusion of B Impurities and Vacancies in SiC[J]. Phys. Rev. B, 2004, 69(12): 125 203

[30]

Ko H, Deng J, Szlufarska I, et al. Ag Diffusion in SiC High–Energy Grain Boundaries: Kinetic Monte Carlo Study with First–Principle Calculations[ J]. Comput. Mater. Sci., 2016, 121: 248-257.

[31]

Vineyard G H. Frequency Factors and Isotope Effects in Solid State Rate Processes[J]. J. Phys. Chem. Solids, 1957, 3(1–2): 121-127.

[32]

Hu X, Tu R, Wei J, et al. Nitrogen Atom Diffusion into TiO2 Anatase Bulk Via Surfaces[J]. Comput. Mater. Sci., 2014, 82: 107-113.

[33]

Han R, Liu L, Tu R, et al. Iodine Atom Diffusion in SiC and Zirconium With First–Principles Calculations[J]. Nucl. Tech., 2016, 195: 192-203.

[34]

Varvenne C, Mackain O, Clouet E. Vacancy Clustering in Zirconium: An Atomic–Scale Study[J]. Acta Mater., 2014, 78: 65-77.

[35]

Varvenne C, Mackain O, Proville L, et al. Hydrogen and Vacancy Clustering in Zirconium[J]. Acta Mater., 2016, 102: 56-69.

[36]

Hoodgm. Point Defect Diffusion in α–Zr[J]. J. Nucl. Mater., 1988, 159: 149-175.

[37]

Samolyuk G, Barashev A, Golubov S, et al. Analysis of the Anisotropy of Point Defect Diffusion in HCP Zr[J]. Acta Mater., 2014, 78: 173-180.

[38]

Jónsson H, Mills G, Jacobsen K W. Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions[M], 1998 Singapore: World Scientific.

[39]

Henkelman G, Jónsson H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points[J]. J. Chem. Phys., 2000, 113: 9 978.

[40]

Henkelman G, Uberuaga B P, Jónsson H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths[J]. J. Chem. Phys., 2000, 113: 9 901.

[41]

Brog R J, Dienes G J. An Introduction to Solid State Diffusion[M], 1988 Salt Lake City: Academic Press Inc..

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/