Microstructure and UV Fluorescence of Amorphous I/Au Composite Nanofilms Based on LVDCS Method

Xiaoyu Zhai , Yufeng Ding , Yixin Kang , Siqi Li , Liangliang Pan , Dapeng Zhang , Huimei He , Xinhua Jiang , Yun Wang , Qingyun Meng

Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 34 ›› Issue (6) : 1254 -1258.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2020, Vol. 34 ›› Issue (6) : 1254 -1258. DOI: 10.1007/s11595-018-2186-8
Advanced Material

Microstructure and UV Fluorescence of Amorphous I/Au Composite Nanofilms Based on LVDCS Method

Author information +
History +
PDF

Abstract

The amorphous I/Au composite nanoflms were prepared by low vacuum direct current sputtering (LVDCS) method. The optimized preparation technologies contain growth pressure, time, gaseous environment and annealing conditions. The maximum fuorescence emission (λ em max) of I/Au nanoflms was observed at wavelength of 375 nm, and the intensity of fuorescence emission peak of annealed I/Au flms was smaller than that of unannealed one due to fewer amorphous Au nanoparticles, caused by annealing treatment. In the UV-Vis absorption spectra, the intensity of UV-Vis absorption peak of annealed I/ Au nanoflms is larger than that of the unannealed one. This work also developed a new way to grow I/Au composite fuorescent thin flms.

Keywords

LVDCS method / amorphous / I/Au nanoflms / fuorescence

Cite this article

Download citation ▾
Xiaoyu Zhai, Yufeng Ding, Yixin Kang, Siqi Li, Liangliang Pan, Dapeng Zhang, Huimei He, Xinhua Jiang, Yun Wang, Qingyun Meng. Microstructure and UV Fluorescence of Amorphous I/Au Composite Nanofilms Based on LVDCS Method. Journal of Wuhan University of Technology Materials Science Edition, 2020, 34(6): 1254-1258 DOI:10.1007/s11595-018-2186-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park JH, Von Maltzahn G, Xu MJ, et al. Cooperative Nanomaterial System to Sensitize, Target, and Treat Tumors[J]. P. Natl. Acad. Sci. USA., 2010, 107: 981-986.

[2]

Larsson EM, Langhammer C, Zorić I, et al. Nanoplasmonic Probes of Catalytic Reactions[J]. Science, 2009, 326: 1091-1094.

[3]

Kosako T, Kadoya Y, Hofmann HF. Directional Control of Light by A Nano-Optical Yagi[ndash]Uda Antenna[J]. Nat. Photonics, 2010, 4: 312-315.

[4]

Zijlstra P, Chon JWM, Gu M. Five-Dimensional Optical Recording Mediated by Surface Plasmons in Gold Nanorods[J]. Nature, 2009, 459: 410-413.

[5]

He YQ, Liu SP, Kong L, et al. A Study on the Sizes and Concentrations of Gold Nanoparticles by Spectra of Absorption, Resonance Rayleigh Scattering and Resonance Non-Linear Scattering[J]. Spectrochim. Acta A, 2004, 61: 2 861-2 866.

[6]

Bell SE, Mccourt MR. SERS Enhancement by Aggregated Au Colloids: Effect of Particle Size[J]. Phys. Chem. Chem. Phys., 2009, 11: 7 455-7 462.

[7]

Ahmadi TS, Wang ZL, Green TC, et al. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles[J]. Science, 1996, 272: 1 924-1 925.

[8]

Belloni J. Metal Nanocolloids[J]. Curr. Opin. Colloid In., 1996, 1: 184-196.

[9]

Henglein A. Physicochemical Properties of Small Metal Particles in Solution: “Microelectrode” Reactions, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition[J]. J. Phys. Chem., 1993, 97: 5 457-5 471.

[10]

Pal T, Jana NR. Reversible Formation and Dissolution of Silver Nanoparticles in Aqueous Surfactant Media[J]. Langmuir, 1997, 13: 1 481-1 485.

[11]

Jana NR, Sau TK, Pal T. Growing Small Silver Particle as Redox Catalyst[J]. J. Phys. Chem. B, 1999, 103: 115-121.

[12]

Whetten RL, Shafgullin MN, Khoury JT, et al. Crystal Structures of Molecular Gold Nanocrystal Arrays[J]. Accounts Chem. Res., 1999, 32: 397-406.

[13]

Collier CP, Vossmeyer AT, Heath JR. Nanocrystal Superlattices[J]. Annu. Rev. Phys. Chem., 1998, 49: 371-404.

[14]

Rao CNR. Novel Materials, Materials Design and Synthetic Strategies: Recent Advances and New Directions[J]. J. Mater. Chem., 1999, 9: 1-14.

[15]

Schmid G, Baumle M, Geerkens M, et al. Current and Future Applications of Nanoclusters[J]. Chem. Soc. Rev., 1999, 28: 179-185.

[16]

Zhu J, Wang YC. Ultraviolet and Blue-Violet Photoluminescence of Gold Nanoparticles[J]. Spectrosc. Spect. Anal., 2005, 25: 235-238.

[17]

Sau TK, Pal A, Jana NR, et al. Size Controlled Synthesis of Gold Nanoparticles Using Photochemically Prepared Seed Particles[J]. J. Nanopart. Res., 2001, 3: 257-261.

[18]

Ji XH, Song XN, Li J, et al. Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate[J]. J. Am. Chem. Soc., 2007, 129: 13 939-13 948.

[19]

Luo XL, Xu JJ, Zhang Q, et al. Electrochemically Deposited Chitosan Hydrogel for Horseradish Peroxidase Immobilization Through Gold Nanoparticles Self-Assembly[J]. Biosens. Bioelectron., 2005, 21: 190-196.

[20]

Zhao JW, Wang YC, Zhu J. Fluorescence Spectra Characters of Nano-structured Gold Thin-Film[J]. Spectrosc. Spect. Anal., 2004, 24: 1 609-1 611.

[21]

Meng QY, Li SQ, Kang YX, et al. Electrical and Optical Properties of Nano Aluminum Film/Particle Structure[J]. J. Wuhan Univ. Technol., 2017, 32: 989-993.

[22]

Ding YF, Pan LL, Li SQ, et al. Fabrication and Investigation of 26NCA Films Exhibiting Tunable Blue Fluorescence Based on LVPVDM[J]. J. Nanomater., 2018, 2018: 1-11.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/