Synthesis and Characterization of Carboxyl-terminated Polyethylene Glycol Functionalized Mesoporous Silica Nanoparticles

Yu Wang , Youyun Wang , Wanxia Wang , Hongda Zhu , Mingxing Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1540 -1545.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1540 -1545. DOI: 10.1007/s11595-018-2003-9
Organic Materials

Synthesis and Characterization of Carboxyl-terminated Polyethylene Glycol Functionalized Mesoporous Silica Nanoparticles

Author information +
History +
PDF

Abstract

Colloidal mesoporous silica nanoparticles functionalized with carboxy-terminated polyethylene glycol (CMS-PEG-COOH) were successfully synthesized by covalently grafting dicarboxy-terminated polyethylene glycol (HOOC-PEG-COOH) on the surface of the amino functionalized CMS nanoparticles with amide bond as a cross linker. Moreover, the structural and particle properties of CMS-PEG-COOH were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), transmission electron microscopy (TEM), dynamic light scattering (DLS), nitrogen adsorption-desorption measurements, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The nanomaterials presented a relatively uniform spherical shape morphology with diameters of about 120 nm,and favorable dispersibility in weak acid solution. The CMS-PEG-COOH exhibited no changes in the state of amorphous, while the mesopores sizes of 5.25 nm might provide the nanomaterials with large capacity for the loading and releasing of drugs. So the results indicated that CMS-PEG-COOH might be a critical nanomaterial for drug delivery system in the future.

Keywords

mesoporous silica nanoparticles / polyethylene glycol / functionalization / carboxy-terminated / synthesis

Cite this article

Download citation ▾
Yu Wang, Youyun Wang, Wanxia Wang, Hongda Zhu, Mingxing Liu. Synthesis and Characterization of Carboxyl-terminated Polyethylene Glycol Functionalized Mesoporous Silica Nanoparticles. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(6): 1540-1545 DOI:10.1007/s11595-018-2003-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Argyo C, Weiss V, Bräuchle C, et al. ChemInform Abstract: Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery[J]. J. Cheminform, 2013, 26(1): 435-451.

[2]

Liu MX, Hu T, Wang X, et al. Functionalization of Semi–terminated Silica Nanotubes[J]. J. Wuhan. Univ. Technol., 2013, 28(3): 425-428.

[3]

Yamamoto E, Kuroda K. Colloidal Mesoporous Silica Nanoparticles [J]. Bull. Chem. Soc. Jpn., 2016, 89(5): 501-539.

[4]

Chen ZR, Zeng X, et al. Preparation and Characterization of Mesoporous Al–MCM–41 Layers Deposited on FeCrAl Metallic Foils by an In–situ Hydrothermal Method[J]. J. Wuhan. Univ. Technol., 2009, 24(1): 1-4.

[5]

Zhang XF, Guo CL, Wang X, et al. Synthesis and Characterization of Bimodal Mesoporous Silica[J]. J. Wuhan. Univ. Technol., 2012, 27(6): 1 084-1 088.

[6]

Yang K, Luo H, Zeng M, et al. Intracellular pH–triggered, Targeted Drug Delivery to Cancer Cells by Multifunctional Envelope–type Mesoporous Silica Nanocontainers[J]. ACS. Appl. Mater. Interfaces, 2015, 7(31): 17 399-17 407.

[7]

Tian Y, Wang Y, Shen S, et al. Temperature and Redox Dual–responsive Biodegradable Nanogels for Optimizing Antitumor Drug Delivery[J]. Part. Part. Syst. Charact., 2015, 32(12): 1 092-1 101.

[8]

Dong J, Zink JI. Light or Heat? the Origin of Cargo Release from Nanoimpeller Particles Containing Upconversion Nanocrystals under IR Irradiation[J]. Small, 2015, 11(33): 4 165-4 172.

[9]

Li ZY, Hu JJ, Xu Q, et al. A Redox–responsive drug Delivery System Based on RGD Containing Peptide–capped Mesoporous Silica Nanoparticles[J]. J. Mater. Chem. B, 2015, 3(1): 39-44.

[10]

Zhao CX, Yu L, Middelberg APJ. Magnetic Mesoporous Silicananoparticles End–capped with Hydroxyapatite for pH–responsive Drug Release [J]. J. Mater. Chem. B, 2013, 1(37): 4 828-4 833.

[11]

Aznar E, Villalonga R, Gimenez C, et al. Glucose–triggered Release Using Enzyme–gated Mesoporous Silica Nanoparticles[J]. Chem. Commun., 2013, 49(57): 6 391-6 393.

[12]

Lai J, Shah BP, Zhang Y, et al. Real–time Monitoring of ATP–responsive Drug Release Using Mesoporous–silica–coated Multicolor Upconversion Nanoparticles[J]. Acs. Nano., 2015, 9(5): 5 234-5 245.

[13]

Gu J, Su S, Zhu M, et al. Targeted Doxorubicin Delivery to Liver Cancer Cells by PEGylated Mesoporous Silica Nanoparticles with a pH–dependent Release Profile[J]. Micropor. Mesopor. Materials, 2012, 161(5): 160-167.

[14]

Chen Y, Chen H, Shi J. In vivo Bio–safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles[J]. Adv. Mater., 2013, 25(23): 3 144-3 176.

[15]

Tang F, Li L, Chen D. Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery[J]. Adv. Mater., 2012, 43(20): 1 504-1 534.

[16]

Kibria G, Hatakeyama H, Ohga N, et al. The Effect of Liposomal Size on the Targeted Delivery of Doxorubicin to Integrin αvβ3–expressing Tumor Endothelial Cells[J]. Biomaterials, 2013, 34(22): 5 617-5 627.

[17]

Wang LS, Wu LC, Lu SY, et al. Biofunctionalized Phospholipid–capped Mesoporous Silica Nanoshuttles for Targeted drug Delivery: Improved Water Suspensibility and Decreased Nonspecific Protein Binding [J]. Acs. Nano., 2010, 4(8): 4 371-4 379.

[18]

Jürgen G, Amirgoulova EV, Thomas A, et al. Biofunctionalized, Ultrathin Coatings of Cross–linked Star–shaped poly(ethylene oxide) Allow Reversible Folding of Immobilized Proteins[J]. J. Am. Chem. Soc., 2004, 126(13): 4 234-4 239.

[19]

Feng W, Nie W, He C, et al. Effect of pH–responsive Alginate/Chitosan Multilayers Coating on Delivery Efficiency, Cellular Uptake and Biodistribution of Mesoporous Silica Nanoparticles Based Nanocarriers[J]. Acs. Appl. Mater. Interfaces, 2014, 6(11): 8 447-8 460.

[20]

He Q, Zhang J, Shi J, et al. The Effect of PEGylation of Mesoporous Silica Nanoparticles on Nonspecific Binding of Serum Proteins and Cellular Responses[J]. Biomaterials, 2010, 31(6): 1 085-1 092.

[21]

Duncan R. Polymer Conjugates as Anticancer Nanomedicines[J]. Nat. Rev. Cancer, 2006, 6(6): 688-701.

[22]

Kecht J, Schlossbauer A, Bein T. Selective Functionalization of the Outer and Inner Surfaces in Mesoporous Silica Nanoparticles[J]. Chem. Mater., 2008, 20(23): 7 207-7 214.

[23]

Kobler J, Möller K, Bein T. Colloidal Suspensions of Functionalized Mesoporous Silica Nanoparticles[J]. Acs. Nano., 2008, 2(2): 791-799.

[24]

Cauda V, Argyo C, Bein T. Impact of Different PEGylation Patterns on the Long–term Bio–stability of Colloidal Mesoporous Silica Nanoparticles [J]. J. Mater. Chem., 2010, 20(39): 8 693-8 699.

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/