Coexistence of Bipolar and Unipolar Resistive Switching Behavior in Ag/ZnMn2O4/p+-Si Device

Yupei Zhang , Hua Wang , Jiwen Xu , Zhida Li , Ling Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1433 -1436.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1433 -1436. DOI: 10.1007/s11595-018-1987-5
Advanced Materials

Coexistence of Bipolar and Unipolar Resistive Switching Behavior in Ag/ZnMn2O4/p+-Si Device

Author information +
History +
PDF

Abstract

ZnMn2O4 thin films were deposited by a sol-gel technique onto a p+-Si substrate, and a RRAM device with the Ag/ZnMn2O4/p+-Si structure was fabricated. The microstructure of ZnMn2O4 films and the resistive switching behavior of Ag/ZnMn2O4/p+-Si device were investigated. ZnMn2O4 thin films had a spinel structure after annealing at 650 °C for 1 h. The Ag/ZnMn2O4/p+-Si device showed unipolar and/or bipolar resistive switching behavior, exhibiting different I ON/I OFF ratio and switching endurance properties. In bipolar resistive switching, high-resistance-state (HRS) conduction was dominated by the space-charge-limited conduction mechanism, whereas the filament conduction mechanism dictated the low resistance state (LRS). For unipolar resistive switching, HRS and LRS were controlled by the filament conduction mechanism. For bipolar resistive switching, the conduction process can be explained by the space-charge region of the p-n junction.

Keywords

ZnMn2O4 / resistive switching behavior / bipolar / unipolar

Cite this article

Download citation ▾
Yupei Zhang, Hua Wang, Jiwen Xu, Zhida Li, Ling Yang. Coexistence of Bipolar and Unipolar Resistive Switching Behavior in Ag/ZnMn2O4/p+-Si Device. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(6): 1433-1436 DOI:10.1007/s11595-018-1987-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu SQ, Wu NJ, Ignatiev A. Electric Pulse Induced Reversible Resistance Change Effect in Magneto Resistive Films[J]. Appl. Phys. Lett., 2000, 76: 2 749-2 751.

[2]

Waser R, Aono M. Nanoionics–based Resistive Switching Memories [J]. Nature, 2007, 6: 833-839.

[3]

Liu DQ, Wang NN, Wang G, et al. Nonvolatile Bipolar Resistive Switching in Amorphous Sr–doped LaMnO3 Thin Films Deposited by Radio Frequency Magnetron Sputtering[J]. Appl. Phys. Lett., 2013, 102: 134105-1.

[4]

Chen Q, Wang H, XU J, et al. Low Temperature Synthesis Amorphous La0.7Zn0.3MnO3 Films Grown on p+–Si Substrates and its Resistive Switching Properties[J]. J. Wuhan University of Technology–Materials Science, 2016, 31(4): 727-730.

[5]

Chang WY, Lai YC, Wu TB, et al. Unipolar Resistive Switching Characteristics of ZnO Thin Films for Nonvolatile Memory Applications[J]. Appl. Phys. Lett., 2008, 92: 022110-1.

[6]

Kukreja LM, Das AK, Misra P. Studies on Nonvolatile Resistance Memory Switching in ZnO Thin Films[J]. Bull. Master. Sci., 2009, 32: 247-252.

[7]

Chen X, Wu G, Jiang P, et al. Colossal Resistance Switching Effect in Pt/spinel–MgZnO/Pt Devices for Nonvolatile Memory Applications[J]. Appl. Phys. Lett., 2009, 94: 033501-1.

[8]

Waser R, Dittmann R, Staikov G, et al. Redox–based Resistive Switching Memories–Nanoionic Mechanisms, Prospects, and Challenges[J]. Adv. Mater., 2009, 21: 2 632-2 663.

[9]

Peng HY, Wu T. Nonvolatile Resistive Switching in Spinel ZnMn2O4 and Ilmenite ZnMnO3[J]. Appl. Phys. Lett., 2009, 95: 152106-1.

[10]

Wang H, Li Z, Xu J, et al. Resistance Switching Properties of Ag/ZnMn2O4/p–Si Fabricated by Magnetron Sputtering for Resistance Random Access Memory[J]. J. Wuhan University of Technology–Materials Science, 2015, 30(6): 1 159-1 162.

[11]

Luo JM, Lin SP, Zheng Y, et al. Nonpolar Resistive Switching in Mndoped BiFeO3 Thin Films by Chemical Solution Deposition[J]. Appl. Phys. Lett., 2012, 101: 062902-1.

[12]

Ranjith R, Prellier W, Cheah JW, et al. Dc Leakage Behavior and Conduction Mechanism in (BiFeO3)m(SrTiO3)m Superlattices[J]. Appl. Phys. Lett., 2008, 92: 232905-1.

[13]

Li YT, Long SB, Liu Q, et al. An Overview of Resistive Random Access Memory Devices[J]. China. Sci. Bull., 2011, 56: 3 072-3 078.

[14]

Lee CB, Kang BS, Benayad A, et al. Effects of Metal Electrodes on the Resistive Memory Switching Property of NiO Thin Films[J]. Appl. Phys. Lett., 2008, 93: 042115-1.

[15]

Coey JMD, Venkatesan M, Fitzgerald CB. Donor Impurity Band Exchange in Dilute Ferromagnetic Oxides[J]. Nat. Mater., 2005, 4: 173-179.

[16]

Pan TM, Lu CH, Mondal S, et al. Resistive Switching Characteristics of Tm2O3, Yb2O3, and Lu2O3–Based Metal–Insulator–Metal Memory Devices. IEEE Trans. Nanotechnol., 2012, 11: 1 040-1 046.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/