PDF
Abstract
Single-crystal Fe3O4 with monodisperse microspheres structure has been used for individual electrochemical detection of heavy metal ions. Morphology and structure of the as-prepared Fe3O4 microspheres were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Meanwhile the electrochemical properties of the Fe3O4 microspheres modified glass carbon electrodes (GCE) were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the enhanced electrochemical response in stripping voltammetry for individual detection of Pb(II), Hg(II), Cu(II), and Cd(II) was evaluated using square wave anodic stripping voltammetry (SWASV). With high specific surface area and excellent catalytic activity toward heavy metal ions, the as-prepared monodisperse and single-crystal Fe3O4 microspheres show a preferable sensing sensitivity (22.2 μA/μM) and limit of detection (0.0699 μM) toward Pb(II). Furthermore, the electrochemical sensor of Fe3O4 microspheres exhibits excellent stability and it also offers potential practical applicability for the determination of heavy metal ions in real water samples. This study provides a potential simple and low cost iron oxide for the construction of sensitive electrochemical sensors applied to monitor and control the pollution of toxic metal ions.
Keywords
Fe3O4
/
microspheres
/
electrochemical detection
/
heavy metal ions
Cite this article
Download citation ▾
Haowei Yan, Shuangqi Hu.
Electrochemical Sensing of Heavy Metal Ions based on Monodisperse Single-crystal Fe3O4 Microspheres.
Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(6): 1422-1427 DOI:10.1007/s11595-018-1985-7
| [1] |
Liu GD, Lin YY, Wu H, et al. Voltammetric Detection of Cr(VI) with Disposable Screen–printed Electrode Modified with Gold Nanoparticles [J]. Environ. Sci. Technol., 2007, 41: 8 129-8 134.
|
| [2] |
Battistel D, Baldi F, Marchetto D, et al. A Rapid Electrochemical Procedure for the Detection of Hg(0) Produced by Mercuric–reductase: Application for Monitoring Hg–resistant Bacteria Activity[J]. Environ. Sci. Technol., 2012, 46: 10 675-10 681.
|
| [3] |
Koehler FM, Rossier M, Waelle M, et al. Magnetic EDTA: Coupling Heavy Metal Chelators to Metal Nanomagnets for Rapid Removal of Cadmium, Lead and Copper from Contaminated Water[J]. Chem. Commun., 2009, 32: 4 862-4 864.
|
| [4] |
Bannon DI, Chisolm JJJr. Anodic Stripping Voltammetry Compared with Graphite Furnace Atomic Absorption Spectrophotometry for Blood Lead Analysis[J]. Clin. Chem., 2001, 47: 1 703-1 704.
|
| [5] |
Liu HW, Jiang SJ, Liu SH. Determination of Cadmium, Mercury and Lead in Seawater by Electrothermal Vaporization Isotope Dilution Inductively Coupled Plasma Mass Spectrometry[J]. Spectrochim. Acta B, 1999 367-1 375.
|
| [6] |
Eksperiandova LP, Blank AB, Makarovskaya YN. Analysis of Waste Water by X–ray Fluorescence Spectrometry[J]. X–Ray Spectrom., 2002, 31: 259-263.
|
| [7] |
Arai YJ, Lanzirotti A, Sutton S, et al. Arsenic Speciation and Reactivity in Poultry Litter[J]. Environ. Sci. Technol., 2003, 37: 4 083-4 090.
|
| [8] |
Xiao L, Wildgoose GG, Compton RG. Sensitive Electrochemical Detection of Arsenic (III) Using Gold Nanoparticle Modified Carbon Nanotubes Via Anodic Stripping Voltammetry[J]. Anal. Chim. Acta, 2008, 620: 44-49.
|
| [9] |
Xue D, Olga N, Hyde ME, et al. Anodic Stripping Voltammetry of Arsenic(III) Using Gold Nanoparticle–modified Electrodes[J]. Anal Chem., 2004, 76: 5 924-5 929.
|
| [10] |
Yantasee W, Lin YH, Hongsirikarn K, et al. Electrochemical Sensors for the Detection of Lead and Other Toxic Heavy Metals: The Next Generation of Personal Exposure Biomonitors[J]. Environ. Health Persp., 2007, 115: 1 683-1 690.
|
| [11] |
Gemma A, Josefina P, Arben M. Recent Trends in Macro–, Micro–, and Nanomaterial–based Tools and Strategies for Heavy–metal Detection[J]. Chem. Rev., 2011, 111: 3 433-3 458.
|
| [12] |
Staden JFV, Matoetoe MC. Simultaneous Determination of Copper, Lead, Cadmium and Zinc Using Differential Pulse Anodic Stripping Voltammetry in a Flow[J]. Anal. Chim. Acta, 2000, 411: 201-207.
|
| [13] |
Hocevar SB, Ivan S, Bozidar O, et al. Antimony Film Electrode for Electrochemical Stripping Analysis[J]. Anal. Chem., 2007, 79: 8 639-8 643.
|
| [14] |
Chekmeneva E, Diaz–Cruz JM, Arino C, et al. Binding of Hg2+ with Phytochelatins: Study by Differential Pulse Voltammetry on Rotating Au–Disk Electrode, Electrospray Ionization Mass–Spectrometry, and Isothermal Titration Calorimetry[J]. Environ. Sci. Technol., 2009, 43: 7 010-7 015.
|
| [15] |
Guo Z, Wei Y, Yang R, et al. Hydroxylation/Carbonylation Carbonaceous Microspheres: A Route Without the Need for an External Functionalization to a “Hunter” of Lead(II) for Electrochemical Detection [J]. Electrochim. Acta., 2013, 87: 46-52.
|
| [16] |
Gadhari NS, Sanghavi BJ, Karna SP, et al. Potentiometric Stripping Analysis of Bismuth Based on Carbon Paste Electrode Modified with Cryptand [2.2.1]_and Multiwalled Carbon Nanotubes[J]. Electrochim. Acta., 2010, 56: 627-635.
|
| [17] |
Xu RX, Yu XY, Gao C, et al. Non–conductive Nanomaterial Enhanced Electrochemical Response in Stripping Voltammetry: The Use of Nanostructured Magnesium Silicate Hollow Spheres for Heavy Metal Ions Detection[J]. Anal. Chim. Acta., 2013, 790: 31-38.
|
| [18] |
Lin M, Cho M, Choe WS, et al. Polypyrrole Nanowire Modified with Gly–Gly–His Tripeptide for Electrochemical Detection of Copper Ion[J]. Biosens. Bioelectron., 2010, 26: 940-945.
|
| [19] |
Xu RX, Yu XY, Gao C, et al. Enhancing Selectivity in Stripping Voltammetry by Different Adsorption Behaviors: the Use of Nanostructured Mg–Al–layered Double Hydroxides to Detect Cd(II)[J]. Analyst., 2013 812-1 818.
|
| [20] |
Gao C, Yu XY, Xiong SQ, et al. Electrochemical Detection of Arsenic(III) Completely Free from Noble Metal: Fe3O4 Microspheres–room Temperature Ionic Liquid Composite Showing Better Performance Than Gold[J]. Anal. Chem., 2013, 85: 2 673-2 680.
|
| [21] |
Li RZ, Liu JP. Mechanistic Investigation of the Charge Storage Process of Pseudocapacitive Fe3O4 Nanorod Film[J]. Electrochim. Acta., 2014, 120: 52-56.
|
| [22] |
Sun YF, Chen WK, Li WJ, et al. Selective Detection Toward Cd2+ Using Fe3O4/RGO Nanoparticle Modified Glassy Carbon Electrode[J]. J. Electroanal. Chem., 2014, 714: 97-102.
|
| [23] |
Li XY, Si ZJ, Lei YQ, et al. Direct Hydrothermal Synthesis of Single–crystalline Triangular Fe3O4 Nanoprisms[J]. Crystengcomm., 2010, 12: 2 060-2 063.
|
| [24] |
Shi Y, Shi MM, Qiao YQ, et al. Fe3O4 Nanobelts: One–pot and Template–free Synthesis, Magnetic Property, and Application for Lithium Storage[J]. Nanotechnology, 2012
|
| [25] |
Liu J, Liu SQ, Zhuang SX, et al. Synthesis of Carbon–coated Fe3O4 Nanorods as Electrode Material for Supercapacitor[J]. Ionics, 2013 255-1 261.
|
| [26] |
Li WJ, Yao XZ, Guo Z, et al. Fe3O4 with Novel Nanoplate–stacked Structure: Surfactant–free Hydrothermal Synthesis and Application in Detection of Heavy Metal Ions[J]. J. Electroanal. Chem., 2015, 749: 75-82.
|
| [27] |
Zhao ZQ, Chen X, Yang Q, et al. Selective Adsorption Toward Toxic Metal Ions Results in Selective Response: Electrochemical Studies on a Polypyrrole/Reduced Graphene Oxide Nanocomposite[J]. Chem. Commun., 2012, 48: 2 180-2 182.
|
| [28] |
Wei Y, Yang R, Zhang YX, et al. High Adsorptive Gamma–AlOOH (boehmite)@SiO2/Fe3O4 Porous Magnetic Microspheres for Detection of Toxic Metal Ions in Drinking Water[J]. Chem. Commun., 2011, 47: 11 062-11 064.
|
| [29] |
Wei Y, Yang R, Yu XY, et al. Stripping Voltammetry Study of Ultra–trace Toxic Metal Ions on Highly Selectively Adsorptive Porous Magnesium Oxide Nanoflowers[J]. Analyst., 2012, 137: 2 183-2 191.
|
| [30] |
Wei Y, Liu ZG, Yu XY, et al. O2–plasma Oxidized multi–walled Carbon Nanotubes for Cd(II) and Pb(II) Detection: Evidence of Adsorption Capacity for Electrochemical Sensing[J]. Electrochem. Commun., 2011, 13: 1 506-1 509.
|
| [31] |
Liu YM, Ju XJ, Xin Y, et al. A Novel Smart Microsphere with Magnetic Core and Ion–recognizable Shell for Pb2+ Adsorption and Separation [J]. ACS Appl. Mater. Inter., 2014, 6: 9 530-9 542.
|
| [32] |
Yu XH, Tian XX, Wang SG. Adsorption of Ni, Pd, Pt, Cu, Ag and Au on the Fe3O4(111) Surface[J]. Surf. Sci., 2014, 628: 141-147.
|
| [33] |
Shen YF, Tang J, Nie ZH, et al. Preparation and Application of Magnetic Fe3O4 Nanoparticles for Wastewater Purification[J]. Sep. Purif. Technol., 2009, 68: 312-319.
|
| [34] |
Deng H, Li X, Peng Q, et al. Monodisperse Magnetic Single–crystal Ferrite Microspheres[J]. Angew. Chemie., 2005, 44: 2 782-2 785.
|
| [35] |
Wang XF, You Z, Sha HL, et al. Electrochemical Myoglobin Biosensor Based on Carbon Ionic Liquid Electrode Modified with Fe3O4@SiO2 Microsphere[J]. J. Solid State Electr., 2014, 18: 207-213.
|
| [36] |
Chen PY, Nien PC, Hu CW, et al. Detection of Uric Acid Based on Multi–walled Carbon Nanotubes Polymerized with a Layer of Molecularly Imprinted PMAA[J]. Sensor. Actuat. B–Chem., 2010, 146: 466-471.
|
| [37] |
Wu ZC, Xu CR, Chen HM, et al. Mesoporous MgO Nanosheets: 1,6–hexanediamin–assisted Synthesis and Their Applications on Electrochemical Detection of Toxic Metal Ions[J]. J. Phys. Chem. Solids., 2013, 74: 1 032-1 038.
|
| [38] |
Sun YY, Zhang WH, Yu HL, et al. Controlled Synthesis Various Shapes Fe3O4 Decorated Reduced Graphene Oxide Applied in the Electrochemical Detection[J]. J. Alloy. Compd., 2015, 638: 182-187.
|
| [39] |
Zhang QX, Peng D, Huang XJ. Effect of Morphology of α–MnO2 Nanocrystals on Electrochemical Detection of Toxic Metal Ions[J]. Electrochem. Commun., 2013, 34: 270-273.
|
| [40] |
Han XJ, Zhou SF, Fan HL, et al. Mesoporous MnFe2O4 Nanocrystal Clusters for Electrochemistry Detection of Lead by Stripping Voltammetry [J]. J. Electroanal. Chem., 2015, 755: 203-209.
|