A Numerical Study of Densification Behavior of Silicon Carbide Matrix Composites in Isothermal Chemical Vapor Infiltration

Kang Guan , Jianqing Wu , Laifei Cheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1365 -1371.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1365 -1371. DOI: 10.1007/s11595-018-1976-8
Advanced Materials

A Numerical Study of Densification Behavior of Silicon Carbide Matrix Composites in Isothermal Chemical Vapor Infiltration

Author information +
History +
PDF

Abstract

We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the reaction. Thereby, we established mathematical models on two scales, respectively, preform and reactor. These models were used for the numerical simulation of the process of ceramic matrix composites densified by isothermal chemical vapor infiltration (ICVI). The models were used to carry out a systematic study on the influence of process conditions and the preform structure on the densification behaviors. The most important findings of our study are that the processing time could be reduced by about 50% without compromising the quality of the material, if the processing temperature is 950–1 000 °C for the first 70 hours and then raised to 1 100 °C.

Keywords

isothermal chemical vapor infiltration / ceramic matrix composites / process parameters / fiber preform structure / densification behavior

Cite this article

Download citation ▾
Kang Guan, Jianqing Wu, Laifei Cheng. A Numerical Study of Densification Behavior of Silicon Carbide Matrix Composites in Isothermal Chemical Vapor Infiltration. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(6): 1365-1371 DOI:10.1007/s11595-018-1976-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Besmann TM, Sheldon BW, Lowden RA, et al. Vapor–Phase Fabrication and Properties of Continuous–Filament Ceramic Composites[J]. Science, 1991 104-1 109.

[2]

Golecki I. Rapid Vapor–Phase Densification of Refractory Composites [J]. Materials Science and Engineering: R: Reports, 1997, 20: 37-124.

[3]

Naslain R, Langlais F, Vignoles G, et al. The CVI–Process: State of the Art and Perspective[C]. Tandon R, 2008 373-386.

[4]

Xu Y, Yan XT. Chemical Vapour Infiltration[M]. Chemical Vapour Deposition, Springer London, 2010 165-213.

[5]

Chung GY, McCoy BJ. Modeling of Chemical Vapor Infiltration for Ceramic Composites Reinforced with Layered, Woven Fabrics[J]. J. Am. Ceram. Soc., 1991, 74: 746-751.

[6]

Chung GY, McCoy BJ, Smith JM, et al. Chemical Vapor Infiltration: Modelling Solid Matrix Deposition in Ceramic–Ceramic Composites [J]. Chem. Eng. Sci., 1991, 46: 723-733.

[7]

Chung GY, McCoy BJ, Smith JM, et al. Chemical Vapor Infiltration: Modelling Solid Matrix Deposition for Ceramic Composites Reinforced with Layered Woven Fabrics[J]. Chem. Eng. Sci., 1992 311-323.

[8]

Chung GY, McCoy BJ, Smith JM, et al. Chemical Vapor Infiltration: Dispersed and Graded Depositions for Ceramic Composites[J]. AlChE J., 1993, 39: 1 834-1 846.

[9]

Kulik VI, Kulik AV, Ramm MS, et al. Modeling of SiC–Matrix Composite Formation by Isothermal Chemical Vapor Infiltration[J]. J. Cryst. Growth, 2004, 266: 333-339.

[10]

Wei X, Cheng L, Zhang L, et al. A Two–dimensional Model for Densification Behaviour of C/SiC Composites in Isothermal Chemical Vapour Infiltration[J]. Modell. Simul. Mater. Sci. Eng., 2006, 14: 891.

[11]

Wei X, Cheng L, Zhang L, et al. Numerical Simulation of Effect of Methyltrichlorosilane Flux on Isothermal Chemical Vapor Infiltration Process of C/SiC Composites[J]. J. Am. Ceram. Soc., 2006, 89: 2 762-2 768.

[12]

Hua Y, Zhang L, Cheng L, et al. A Two–process Model for Study of the Effect of Fiber Preform Structure on Isothermal Chemical Vapor Infiltration of Silicon Carbide Matrix Composites[J]. Computational Materials Science, 2009, 46: 133-141.

[13]

Wei X, Cheng L, Zhang L, et al. Numerical Simulation for Fabrication of C/SiC Composites in Isothermal CVI Reactor[J]. Computational Materials Science, 2006, 38: 245-255.

[14]

Wei X, Cheng L, Zhang L, et al. Numerical Simulation of Effects of Reactor Dimensions on Isothermal CVI Process of C/SiC Composites [J]. Computational Materials Science, 2008, 44: 670-677.

[15]

Sheldon BW, Besmann TM. Reaction and Diffusion Kinetics during the Initial Stages of Isothermal Chemical Vapor Infiltration[J]. J. Am. Ceram. Soc., 1991, 74: 3 046-3 053.

[16]

Mason EA, Malinauskas A. Gas Transport in Porous Media: The Dusty–Gas Model[M]. 1983

[17]

Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena[M]. 2007

[18]

Guan K, Cheng L, Zeng Q, et al. Prediction of Permeability for Chemical Vapor Infiltration[J]. J. Am. Ceram. Soc., 2013, 96: 2 445-2 453.

[19]

Guan K, Cheng L, Zeng Q, et al. Modeling of Pore Structure Evolution between Bundles of Plain Woven Fabrics during Chemical Vapor Infiltration Process: The Influence of Preform Geometry[J]. J. Am. Ceram. Soc., 2013, 96: 51-61.

[20]

Guan K, Cheng L, Zeng Q, et al. Modeling of Pore Structure Evolution within the Fiber Bundle during Chemical Vapor Infiltration Process[J]. Chem. Eng. Sci., 2011, 66: 5 852-5 861.

[21]

Besmann TM, Sheldon B I T, et al. Depletion Effects of Silicon Carbide Deposition from Methyltrichlorosilane[J]. J. Am. Ceram. Soc., 1992, 75: 2 899-2 903.

[22]

Loumagne F, Langlais F, Naslain R. Reactional Mechanisms of the Chemical Vapour Deposition of Sic–Based Ceramics From CH3SiCl3/H2 Gas Precursor[J]. J. Cryst. Growth, 1995, 155: 205-213.

[23]

Loumagne F, Langlais F, Naslain R. Experimental Kinetic Study of the Chemical Vapour Deposition of SiC–based Ceramics from CH3SiCl3/H2 Gas Precursor[J]. J. Cryst. Growth, 1995, 155: 198-204.

[24]

Zhang WG, Hüttinger KJ. CVD of SiC from Methyltrichlorosilane. Part I: Deposition Rates[J]. Chem. Vap. Deposition, 2001, 7: 167-172.

[25]

Papasouliotis GD, Sotirchos SV. Hydrogen Chloride Effects on the CVD of Silicon Carbide from Methyltrichlorosilane[J]. Chem. Vap. Deposition, 1998, 4: 235-246.

[26]

Reuge N, Vignoles GL. Modeling of Isobaric–isothermal Chemical Vapor Infiltration: Effects of Reactor Control Parameters on A Densification [J]. J. Mater. Process. Technol., 2005, 166: 15-29.

[27]

Vignoles GL, Descamps C, Reuge N. Interaction between A Reactive Preform and the Surrounding Gas–phase during CVI[J]. Journal de physique. IV, 2000

[28]

Jiao Y, Li H, Li K. Multi–physical Field Coupling Simulation of TCVI Process for Preparing Carbon/carbon Composites[J]. Science in China Series E: Technological Sciences, 2009, 52: 3 173-3 179.

[29]

Besmann TM, Sheldon BW, Kaster MD. Temperature and Concentration Dependence of SiC Deposition on Nicalon Fibers[J]. Surf. Coat. Technol., 1990, 43–44: 167-175.

[30]

Brennfleck K, Fitzer E, Schoch G, et al. CVD of SiC–interlayers and Their Interaction with Carbon–Fibers and with Multilayered Nbn–Coatings [J]. 1984 NJ 08534: J. Electrochem. Soc..

[31]

Zhang WG, Hüttinger KJ. CVD of SiC from Methyltrichlorosilane. Part II: Composition of the Gas Phase and the Deposit[J]. Chemical Vapor Deposition, 2001, 7: 173-181.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/