Bipolar Resistive Switching Effect in BiFeO3/Nb:SrTiO3 Heterostructure by RF Sputtering at Room Temperature

Pengfei Wang , Hui Zhu , Yingqiao Zhang , Shiwei Feng , Chunsheng Guo , Yamin Zhang , Xiao Meng , Qiong Qi

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1360 -1364.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1360 -1364. DOI: 10.1007/s11595-018-1975-9
Advanced Materials

Bipolar Resistive Switching Effect in BiFeO3/Nb:SrTiO3 Heterostructure by RF Sputtering at Room Temperature

Author information +
History +
PDF

Abstract

The (001) oriented BiFeO3 thin film was deposited on the Nb: SrTiO3 substrate by radio frequency magnetron sputtering technology, and the bipolar resistive switching effect was observed in the BiFeO3/Nb: SrTiO3 heterostructure. The results showed that the ratio between the high resistance and low resistance was more than two orders at a reading pulse of -0.5 V and it exhibited excellent retention over 3600 s. The current density-voltage characteristic was dominated by the space-charge-limited conduction. The resistive switching effect of the structure was attributed to the trapping/detrapping of the charge carriers.

Keywords

BiFeO3 films / sputter / bipolar resistive switching / space-charge-limited conduction

Cite this article

Download citation ▾
Pengfei Wang, Hui Zhu, Yingqiao Zhang, Shiwei Feng, Chunsheng Guo, Yamin Zhang, Xiao Meng, Qiong Qi. Bipolar Resistive Switching Effect in BiFeO3/Nb:SrTiO3 Heterostructure by RF Sputtering at Room Temperature. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(6): 1360-1364 DOI:10.1007/s11595-018-1975-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Waser R, Dittmann R, Staikov G, et al. Redox–Based Resistive Switching Memories–Nanoionic Mechanisms, Prospects, and Challenges[J]. Adv. Mater., 2009, 21: 2632-21 2632.

[2]

Wang L, Yang CH, Wen J. Physical Principles and Current Status of Emerging Non–Volatile Solid State Memories[J]. Electron. Mater. Lett, 2015, 11: 505-4 543.

[3]

Xia QF, Robinett W, Cumbie MW, et al. Memristor–CMOS Hybrid Integrated Circuits for Reconfigurable Logic[J]. Nano Lett., 2009, 9: 10 3640-10 3640.

[4]

Hill NA. Why Are There So Few Magnetic Ferroelectrics[J]. J. Phys. Chem. B, 2000, 31: 49 6694-49 6709.

[5]

Yang CH, Seidel J, Kim S Y, et al. Electric Modulation of Conduction in Multiferroic Ca–doped BiFeO3 Films[J]. Nature Materials, 2009, 8: 6 485-6 493.

[6]

Wu SX, Ren LZ, Yu FM, et al. Colossal Resistance Switching in Pt/BiFeO3/Nb:SrTiO3 Memristor[J]. Appl. Phys. A, 2014, 116: 4 1741-4 1745.

[7]

Hu ZQ, Li Q, Li MY, et al. Ferroelectric Memristor based on Pt/Bi–FeO3/Nb–Doped SrTiO3 Heterostructure[J]. Appl. Phys. Lett., 2013, 102: 10 076502-10 493.

[8]

Zhu XJ, Zhu F, Li M, et al. Microstructure Dependence of Leakage and Resistive Switching Behaviours in Ce–Doped BiFeO3 Thin Films[J]. J. Phys. D: Appl. Phys, 2011, 44: 415104-415104.

[9]

Chen S W, Wu JM. Unipolar Resistive Switching Behavior of BiFeO3 Thin Films Prepared by Chemical Solution Deposition[J]. Thin Solid Films, 2010, 519: 1 499-1504.

[10]

Tang XW, Zhu XB, Dai JM, et al. Evolution of the Resistive Switching in Chemical Solution Deposited–Derived BiFeO3 Thin Films with Dwell Time and Annealing Temperature[J]. J. Appl. Phys., 2013, 113: 4 403-4 403.

[11]

Luo JM, Lin SP, Zheng Y, et al. Nonpolar Resistive Switching in Mn–Doped BiFeO3 Thin Films by Chemical Solution Deposition[J]. Appl. Phys. Lett., 2012, 101: 6 2032-6 2032.

[12]

Zhang LX, Chen J, Cao JL, et al. Large Resistive Switching and Switchable Photovoltaic Response in Ferroelectric Doped Bi–FeO3–Based Thin Films by Chemical Solution Deposition[J]. J. Mater. Chem. C, 2015, 3: 18 4706-18 4712.

[13]

Katiyar RK, Sharma Y, Barrionuevo Diestra DG, et al. Unipolar Resistive Switching in Planar Pt/BiFeO3/Pt Structure[J]. AIP Advances, 2015, 5: 3 103509-6350.

[14]

Lee D, Baek SH, Kim TH, et al. Polarity Control of Carrier Injection at Ferroelectric/Metal Interfaces for Electrically Switchable Diode and Photovoltaic Effect[J]. Phys. Rev. B, 2011, 84: 125305-125305.

[15]

Deng HL, Zhang M, Li T, et al. Magnetization and Resistance Switchings Induced by Electric Field in Epitaxial Mn:ZnO/BiFeO3 Multiferroic Heterostructures at Room Temperature[J]. ACS Appl. Mater. Interfaces, 2016, 8: 6-6.

[16]

Lee JH, Jeon JH, Yoon C, et al. Intrinsic Defect–Mediated Conduction and Resistive Switching in Multiferroic BiFeO3 Thin Films Epitaxially Grown on SrRuO3 Bottom Electrodes[J]. Appl. Phys. Lett., 2016, 108: 11 1062-11 1087.

[17]

Jiménez D, Miranda E, Tsurumaki–Fukuchi A, et al. Multilevel Recording in Bi–Deficient Pt/BFO/SRO Heterostructures Based on Ferroelectric Resistive Switching Targeting High–Density Information Storage in Nonvolatile Memories[J]. Appl. Phys. Lett., 2013, 103: 26 2161-26 4597.

[18]

Jiang AQ, Wang C, Jin KJ, et al. A Resistive Memory in Semiconducting BiFeO3 Thin–Film Capacitors[J]. Adv. Mater, 2015, 23: 10 1277-10 1281.

[19]

Shang DS, Wang Q, Chen LD, et al. Effect of Carrier Trapping on the Hysteretic Current–Voltage Characteristics in Ag/La0.7Ca0.3MnO3/Pt Heterostructure[J]. Phys. Rev. B, 2006, 73: 245427-245427.

[20]

Gao CX, Lv FZ, Zhang P, et al. Tri–State Bipolar Resistive Switching Behavior in a Hydrothermally Prepared Epitaxial BiFeO3 Film[J]. J. Alloys Compd, 2015, 649: 694-698.

[21]

Lee JH, Jeon JH, Yoon C, et al. Intrinsic Defect–Mediated Conduction and Resistive Switching in Multiferroic BiFeO3 Thin Films Epitaxially Grown on SrRuO3 Bottom Electrodes[J]. Appl. Phys. Lett., 2016, 108: 11 1062-11 1087.

[22]

Yang H, Luo HM, Wang H, et al. Rectifying Current–Voltage Characteristics of BiFeO3/Nb–Doped SrTiO3 Heterojunction[J]. Appl. Phys. Lett., 2008, 92: 10 124-10 127.

[23]

Qu TL, Zhao YG, Xie D, et al. Resistance Switching and White–Light Photovoltaic Effects in BiFeO3/Nb–SrTiO3 Heterojunctions[J]. Appl. Phys. Lett., 2011, 98: 17 1719-17 1719.

[24]

Thakre A, Borkar H, Singha B P K. A Electroforming Free High Resistance Resistive Switching of Graphene Oxide Modified Polar–PVDF[J]. RSC Adv., 2015, 5: 71 57406-71 57413.

[25]

Ni MC, Guo SM, Tian HF, et al. Electroforming Free High Resistance Resistive Switching of Graphene Oxide Modified Polar–PVDF[J]. Appl. Phys. Lett., 2007, 91: 183502-183502.

[26]

Chang ST, Lee JY. Electrical Conduction Mechanism in High–Dielectric–Constant (Ba–0.5,Sr–0.5)TiO3 Thin Films[J]. Appl. Phys. Lett., 2002, 80: 4 655-4 657.

[27]

Zhang HJ, Zhang XP, Shi JP, et al. Effect of Oxygen Content and Superconductivity on the Nonvolatile Resistive Switching in YBa2 Cu3 O6+x/Nb–Doped SrTiO3 Heterojunction[J]. Appl. Phys. Lett., 2009, 94: 9 833.

[28]

Stolichnov I, Tagantsev A. Space–Charge Influenced–Injection Model for Conduction in Pb (Zr x Ti1−x)O3 Thin Films[J]. J. Appl. Phy., 1998, 84: 6 3216-6 3225.

[29]

Tang XG, Wang J, Zhang YW, et al. Leakage Current and Relaxation Characteristics of Highly (111)–Oriented Lead Calcium Titanate Thin Films[J]. J. Appl. Phys., 2003, 94: 8 5163-8 5166.

[30]

Yan ZB, Liu JM. Coexistence of High Performance Resistance and Capacitance Memory Based on Multilayered Metal–Oxide Structures[J]. Sci. Rep., 2013, 3: 8 2482-8 2482.

[31]

Deng HL, Zhang M, Wei JZ, et al. Nonvolatile Bipolar Resistive Switching in Ba–Doped BiFeO3 Thin Films[J]. Solid–State Electronics, 2015, 109: 72-75.

[32]

Liu WW, Jia CH, Zhang Q, et al. Mechanism of Rectification and Two–Type Bipolar Resistance Switching Behaviors of Pt/Pb(Zr0.52Ti0.48)O3 /Nb:SrTiO3[J]. J. Phys. D: Appl. Phys, 2015, 48: 485102-485102.

[33]

Miranda E, Jimenez D, Tsurumaki–Fukuchi A, et al. Modeling of Hysteretic Schottky Diode–Like Conduction in Pt/BiFeO3/SrRuO3 Switches[J]. Appl. Phys. Lett., 2014, 105: 8 125305-8 1281.

[34]

Li H, Jin KX, Yang SH, et al. Ultraviolet Photovoltaic Effect in Bi–FeO3/Nb–SrTiO3 Heterostructure[J]. J. Appl. Phys., 2012, 112: 8 392-8 392.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/