Electronic, Thermal Expanding, and Optical Absorption Properties of Transition Metal Dichalcogenides: A First-principles Study

Hui Zhang , Yanbin Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1355 -1359.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1355 -1359. DOI: 10.1007/s11595-018-1974-x
Advanced Materials

Electronic, Thermal Expanding, and Optical Absorption Properties of Transition Metal Dichalcogenides: A First-principles Study

Author information +
History +
PDF

Abstract

A comprehensive investigation was made on the electronic structure, thermal expansion coefficient and light absorption spectrum of total six transition metal dichalcogenides (TMDs) compounds with formula of MX2 (M=Mo, W, Cr, X=S, Se). First, an indirect-direct band gap transition from bulk to singlelayer was declared for all the six compounds. Moreover, the detailed lattice constants and thermal expansion coefficients provided in the paper were the key information for designing MX2-based field effect transistors. Finally, the calculated optical absorption spectra demonstrate that these compounds can effectively utilize solar energy and are good photo catalyst candidates. All these present findings will benefit the design of new generation of novel two-dimensional materials.

Keywords

first-principles / electronic structure / thermal expansion / light absorption index

Cite this article

Download citation ▾
Hui Zhang, Yanbin Wu. Electronic, Thermal Expanding, and Optical Absorption Properties of Transition Metal Dichalcogenides: A First-principles Study. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(6): 1355-1359 DOI:10.1007/s11595-018-1974-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lu J, Yeo PSE, Zheng Y, et al. Step Flow Versus Mosaic Film Growth in Hexagonal Boron Nitride[J]. J. Am. Chem. Soc., 2013, 135(6): 2 368-2 373.

[2]

Gao JF, Zhao JJ, Ding F. Transition Metal Surface Passivation Induced Graphene Edge Reconstruction[J]. J. Am. Chem. Soc., 2012, 134(14): 6 204-6 209.

[3]

Luo X, Yang J, Liu H, et al. Predicting Two–Dimensional Boron–Carbon Compounds by the Global Optimization Method[J]. J. Am. Chem. Soc., 2011, 133(40): 16 285-16 290.

[4]

Chen YF, Xi JY, Dumcenco DO, et al. Tunable Band–Gap Photoluminescence from Atomically Thin Transition–Metal Dichalcogenide Alloys[J]. ACS Nano, 2013, 7(5): 4 610-4 616.

[5]

Ataca C, Şahin H, Ciraci S. Stable, Single–Layer MX2 Transition–Metal Oxides and Dichalcogenides in a Honeycomb–Like Structure[J]. J. Phys. Chem. C, 2012, 116(16): 8 983-8 999.

[6]

Conley H, Wang B, Ziegler J, et al. Bandgap Engineering of Strained Monolayer and Bilayer MoS2[J]. Nano Lett., 2013, 13(8): 3 626-3 630.

[7]

Ma YD, Dai Y, Guo M, et al. Evidence of the Existence of Magnetism in Pristine VX2 Monolayers (X = S, Se) and Their Strain–Induced Tunable Magnetic Properties[J]. ACS Nano, 2012, 6(2): 1 695-1 701.

[8]

Nicholas AL, Adam JS, Saroj KN. Strain Engineering the Work Function in Monolayer Metal Dichalcogenides[J]. J. Phys.: Condens. Matter, 2015, 27(17): 175 501-175 506.

[9]

Xiang Q, Yu J, Jaroniec M. Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles[J]. J. Am. Chem. Soc., 2012, 134(15): 6 575-6 578.

[10]

Yu Z, Ong ZY, Li S, et al. Analyzing the Carrier Mobility in Transition–Metal Dichalcogenide MoS2 Field–Effect Transistors[J]. Adv. Funct. Mater., 2017, 27(19): 1 604 093-1 604 109.

[11]

Fang H, Chuang S, Chang TC, et al. High–Performance Single Layered WSe2 p–FETs with Chemically Doped Contacts[J]. Nano Lett., 2012, 12(7): 3 788-3 792.

[12]

Zhang H, Liu LM, Lau WM. Dimension–dependent Phase Transition and Magnetic Property of VS2[J]. J. Mater. Chem. A, 2013, 1: 10 821-10 828.

[13]

King LA, Zhao W, Chhowalla M, et al. Photoelectrochemical Properties of Chemically Exfoliated MoS2[J]. J. Mater. Chem. A, 2013, 1(31): 8 935-8 941.

[14]

Kresse G, Furthmüller J. Efficiency of ab–initio Total Energy Calculations for Metals and Semiconductors Using a Plane–wave Basis Set[J]. Comput. Mater. Sci., 1996, 6(1): 15-50.

[15]

Kresse G, Furthmüller J. Efficient Iterative Schemes for ab Initio Total–energy Calculations Using a Plane–wave Basis Set[J]. Phys. Rev. B, 1996, 54(16): 11 169-11 186.

[16]

Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77(18): 3 865-3 868.

[17]

Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented–wave Method[J]. Phys. Rev. B, 1999, 59(3): 1 758-1 775.

[18]

Monkhorst HJ, Pack JD. Special Points for Brillouin–zone Integrations [J]. Phys. Rev. B, 1976, 13(12): 5 188-5 192.

[19]

Wu X, Vargas MC, Nayak S, et al. Towards Extending the Applicability of Density Functional Theory to Weakly Bound Systems[J]. J. Chem. Phys., 2001, 115(19): 8 748-8 757.

[20]

Nicolosi V, Chhowalla M, Kanatzidis MG, et al. Liquid Exfoliation of Layered Materials[J]. Science, 2013, 340(6139): 1 226 419

[21]

Andersen A, Kathmann SM, Lilga MA, et al. First–Principles Characterization of Potassium Intercalation in Hexagonal 2H–MoS2[J]. J. Phys. Chem. C, 2012, 116(2): 1 826-1 832.

[22]

Ataca C, Ciraci S. Functionalization of Single–Layer MoS2 Honeycomb Structures[J]. J. Phys. Chem. C, 2011, 115(27): 13 303-13 311.

[23]

Togo A, Oba F, Tanaka I. First–principles Calculations of the Ferroelastic Transition between Rutile–type and CaCl2–type SiO2 at High Pressures[J]. Phys. Rev. B, 2008, 78(13): 134 106

[24]

Sheetz RM, Ponomareva I, Richter E, et al. Defect–induced Optical Absorption in the Visible Range in ZnO Nanowires[J]. Phys. Rev. B, 2009, 80(19): 195 314

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/