Nanomechanical Property Measurements of SrTiO3 Submicron-fiber

Qingfeng Zhu , Yuxia Gao , Yang Yang , Yongli Huang , Xiaolan Tan , Feng An , Kai Pan , Shuhong Xie

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1350 -1354.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1350 -1354. DOI: 10.1007/s11595-018-1973-y
Advanced Materials

Nanomechanical Property Measurements of SrTiO3 Submicron-fiber

Author information +
History +
PDF

Abstract

Strontium titanate (SrTiO3) submicron-fibers with perovskite structure were successfully synthesized by electrospinning method. The nanomechanical properties of synthesized SrTiO3 were investigated by the novel amplitude modulation-frequency modulation (AM-FM) method based on atomic force microscope and nanoindentation technique. The results of AM-FM show that the resonant frequency of SrTiO3 submicron-fiber is lower than that of the Si substrate, which indicates that the Young’s modulus of SrTiO3 submicron-fiber is smaller than that of Si substrate in the range of 105–125 GPa. Nanoindentation further confirmed the results, showing a value of 104 ± 17 GPa. The atomic force microscope-based AM-FM provides us a new way to study the mechanical performance of low dimensional materials.

Keywords

submicron-fiber / electrospinning / amplitude modulation-frequency modulation / nanoindentation / Young’s modulus

Cite this article

Download citation ▾
Qingfeng Zhu, Yuxia Gao, Yang Yang, Yongli Huang, Xiaolan Tan, Feng An, Kai Pan, Shuhong Xie. Nanomechanical Property Measurements of SrTiO3 Submicron-fiber. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(6): 1350-1354 DOI:10.1007/s11595-018-1973-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai HW, Liu ZY, Sun DD. Facile Fabrication of TiO2/SrTiO3 Composite Nanofibers by Electrospinning for High Efficient H2 Generation [J]. J. Am. Ceram. Soc., 2013, 96(3): 942-949.

[2]

Yang GR, Yan W, Wang JN, et al. Fabrication and Photocatalytic Activities of SrTiO3 Nanofibers by Sol–gel Assisted Electrospinning[J]. J. Sol–Gel Sci. Technol., 2014, 71(1): 159-167.

[3]

Macaraog L, Chuangchote S, Sagawa T. Electrospun SrTiO3 Nanofibers for Photocatalytic Hydrogen Generation[J]. J. Mater. Res., 2013, 29(1): 123-130.

[4]

Beattie AG, Samara GA. Pressure Dependence of the Elastic Constants of SrTiO3[J]. J. Appl. Phys., 1971, 42(6): 2 376-2 381.

[5]

Fischer GJ, Wang Z, Karato SI. Elasticity of CaTiO3, SrTiO3 and Ba–TiO3 Perovskites up to 3.0 GPa: The Effect of Crystallographic Structure [J]. Phys. Chem. Miner., 1993, 20(2): 97-103.

[6]

Thomas D, Janardhanan C, Sebastian MT. Mechanically Flexible Butyl Rubber–SrTiO3 Composite Dielectrics for Microwave Applications[J]. Int. J. Appl. Ceram. Technol., 2011, 8(5): 1 099-1 107.

[7]

Nisa VS, Rajesh S, Murali KP, et al. Preparation, Characterization and Dielectric Properties of Temperature Stable SrTiO3/PEEK Composites for Microwave Substrate Applications[J]. Compos. Sci. Technol., 2008, 68(1): 106-112.

[8]

Wang JS, Yin S, Komatsu M, et al. Photo–oxidation Properties of Nitrogen Doped SrTiO3 Made by Mechanical Activation[J]. Appl. Catal. B–Environ., 2004, 52(1): 11-21.

[9]

Yuan XL, Zheng MJ, Zhang YF, et al. Self–assembly of Three–dimensional SrTiO3 Microscale Superstructures and Their Photonic Effect[J]. Inorg. Chem., 2013, 52(5): 2 581-2 587.

[10]

Peigney A, Laurent C, Flahaut E, et al. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes[J]. Carbon, 2001, 39(4): 507-514.

[11]

Sehaqui H, Zhou Q, Berglund LA. High–porosity Aerogels of High Specific Surface Area Prepared from Nanofibrillated Cellulose (NFC)[J]. Compos. Sci. Technol., 2011, 71(13): 1 593-1 599.

[12]

Podgorski A, Balazy A, Gradon L. Application of Nanofibers to Improve the Filtration Efficiency of the Most Penetrating Aerosol Particles in Fibrous Filters[J]. Chem. Eng. Sci., 2006, 61(20): 6 804-6 815.

[13]

Yang DZ, Li Y N, Nie J. Preparation of Gelatin/PVA Nanofibers and Their Potential Application in Controlled Release of Drugs[J]. Carbohydr. Polym., 2007, 69(3): 538-543.

[14]

Wang L, Yu Y, Chen PC, et al. Electrospinning Synthesis of C/Fe3O4 Composite Nanofibers and Their Application for High Performance Lithium–ion Batteries[J]. J. Power Sources, 2008, 183(2): 717-723.

[15]

Wang G, Ji Y, Huang X, et al. Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing[J]. J. Phys. Chem. B, 2006, 110(47): 23 777-23 782.

[16]

Schranz W, Sondergeld P, Kityk AV, et al. Elastic Properties of SrTiO3 Crystals at Ultralow Frequencies[J]. Phase Transitions, 1999, 69(1): 61-76.

[17]

Scott JF, Ledbetter H. Interpretation of Elastic Anomalies in SrTiO3 at 37K[J]. Z. Phys. B: Condens. Matter, 1997, 104(4): 635-639.

[18]

Demczyk BG, Wang YM, Cumings J, et al. Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multi–Walled Carbon Nanotubes[J]. Microsc. Microanal., 2002, 334(1/2): 173-178.

[19]

Lee SH, Tekmen C, Sigmund WM. Three–point Bending of Electrospun TiO2 Nanofibers[J]. Mater. Sci. Eng. A, 2005, 398(1/2): 77-81.

[20]

Li XD, Gao HS, Murphy CJ, et al. Nanoindentation of Silver Nanowires[J]. Nano Lett., 2003, 3(11): 1 495-1 498.

[21]

Garcia R, Proksch R, Garcia R. Nanomechanical Mapping of Soft Matter by Bimodal Force Microscopy[J]. Eur. Polym. J., 2013, 49(8): 1 897-1 906.

[22]

Oliver WC, Pharr GM. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments[J]. J. Mater. Res., 1992, 7(6): 1 564-1 583.

[23]

Hopcroft MA, et al. What is the Young’s Modulus of Silicon?[J]. J. Microelectromech. S., 2010, 19(2): 229-238.

[24]

Yablon DG, Gannepalli A, Proksch R, et al. Quantitative Viscoelastic Mapping of Polyolefin Blends with Contact Resonance Atomic Force Microscopy[J]. Macromolecules, 2012, 45(10): 4 363-4 370.

[25]

Bhushan B, Li X. Nanomechanical Characterisation of Solid Surfaces and Thin Films[J]. Int. Mater. Rev., 2003, 48(3): 125-164.

[26]

Li XD, Gao HS, Murphy CJ, et al. Nanoindentation of Cu2O Nanocubes [J]. Nano Lett., 2004, 4(10): 1 903-1 907.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/