3D Interconnected MoO2 Nanocrystals on Nickel Foam as Binder-free Anode for Li-ion Batteries

Yanyuan Qi , Bo Zhou , Shenbo Zheng , Xue Yang , Wei Jin

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1315 -1322.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (6) : 1315 -1322. DOI: 10.1007/s11595-018-1969-7
Advanced Materials

3D Interconnected MoO2 Nanocrystals on Nickel Foam as Binder-free Anode for Li-ion Batteries

Author information +
History +
PDF

Abstract

MoO2 nanocrystals (NCs) on Ni foam were simply synthesized via a facile hydrothermal method and a dip-coating method. It was worth noting that ultrafine interconnected MoO2 nanocrystals (about 10 nm) were uniformly anchored on Ni foam to fabricate a particular three-dimensional architecture, which may provide more active sites and shorter transmission pathways for lithium ions. As binder-free anode, MoO2 NCs on Ni foam deliver a high initial discharge capacity of 990 mAh·g-1 and retain a reversible capacity of 924 mAh· g-1 after 100 cycles at a current density of 0.1 C. More importantly, when the current density returns from 2 C to 0.1 C, the capacity recovers to 910 mAh·g-1 (about 92% of the original high capacity), suggesting excellent cycling stability and rate capability. The particular 3D electrode as binder-free anode makes it a promising anode candidate for high-performance lithium-ion batteries.

Keywords

MoO2 nanocrystals / 3D architecture / binder-free anode / lithium-ion batteries

Cite this article

Download citation ▾
Yanyuan Qi, Bo Zhou, Shenbo Zheng, Xue Yang, Wei Jin. 3D Interconnected MoO2 Nanocrystals on Nickel Foam as Binder-free Anode for Li-ion Batteries. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(6): 1315-1322 DOI:10.1007/s11595-018-1969-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Z, Mo J, Wu Y, et al. Synthesis of Lithium Garnet Oxides of the Compositions Series Li7–xLa3Zr2–xTa xO12[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 1 261-1 264.

[2]

He J, Long F, Peng D, et al. Ribbon–like Cu doped V6O13 as Cathode Material for High–performance Lithium Ion Batteries[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 1 397-1 401.

[3]

Liu HD, Huang JM, Li X, et al. Graphene as a High–capacity Anode Material for Lithium Ion Batteries[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2013, 28: 220-223.

[4]

Li D, Li X, Wang S, et al. Carbon–wrapped Fe3O4 Nanoparticle Films grown on Nickel Foam as Binder–free Anodes for High–rate and Long–life Lithium Storage[J]. ACS Appl. Mater. Interfaces, 2014, 6: 648-654.

[5]

Chen HX, Zhang QB, Wang JX, et al. Improved Lithium Ion Battery Performance by Mesoporous Co3O4 Nanosheets Grown on Self–standing NiSi x Nanowires on Nickel Foam[J]. J. Mater. Chem. A, 2014, 2: 8 483-8 490.

[6]

Ponrouch A, Sevilla M, Marchante E, et al. Facile Synthesis of Graphitic Carbons Decorated with SnO2 Nanoparticles and Their Application as High Capacity Lithium–ion Battery Anodes[J]. J. Appl. Electrochem., 2012, 42: 901-908.

[7]

Cabana J, Monconduit L, Larcher D, et al. Beyond Intercalation–based Li–ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions[J]. Adv. Mater., 2010 E170-E192.

[8]

Zeng LX, Zheng C, Deng CL, et al. MoO2–ordered Mesoporous Carbon Nanocomposite as an Anode Material for Lithium–ion Batteries[J]. ACS Appl. Mater. Interfaces, 2013, 5: 2 182-2 187.

[9]

Ni J, Zhao Y, Li L, et al. Ultrathin MoO2 Nanosheets for Superior Lithium Storage[J]. Nano Energy, 2015, 11: 129-135.

[10]

Chen H, Ma T, Zeng Y, et al. Mechanism of Capacity Fading Caused by Mn (II) Deposition on Anodes for Spinel Lithium Manganese Oxide cell[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 1-10.

[11]

Wang Y, Zhao S, et al. Synthesis and Properties of Li2MnSiO4/C cathode Materials for Li–ion Batteries[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2016, 31: 945-949.

[12]

Liu Y, Zhang H, Ouyang P, et al. One–pot Hydrothermal Synthesized MoO2 with High Reversible Capacity for Anode Application in Lithium Ion Battery[J]. Electrochim. Acta, 2013, 102: 429-435.

[13]

Guo B, Fang X, Li B, et al. Synthesis and Lithium Storage Mechanism of Ultrafine MoO2 Nanorods[J]. Chem. Mater., 2012, 24: 457-463.

[14]

Zhou L, Wu HB, Wang Z Y, et al. Interconnected MoO2 Nanocrystals with Carbon Nanocoating as High–capacity Anode Materials for Lithium–ion Batteries[J]. ACS Appl. Mater. Interfaces, 2011, 3: 4 853-4 857.

[15]

Zhai WK, Xu YM, Cheng X L, et al. Facile Synthesis of Monodisperse Hierarchical MoO2 Porous Spheres for High–performance Li–ion Battery [J]. Mater. Lett., 2015, 145: 287-290.

[16]

Wang X, Yong Y, Bo H, et al. Protein–mediated Layer–by–layer Synthesis of TiO2(B)/Anatase/Carbon Coating on Nickel Foam as Negative Electrode Material for Lithium–ion Battery[J]. ACS Appl. Mater. Interfaces, 2013, 5: 3 631-3 637.

[17]

Xiong L, Teng Y, Wu Y, et al. Large–scale Synthesis of Aligned Co3O4 Nanowalls on Nickel Foam and Their Electrochemical Performance for Li–ion Batteries[J]. Ceram. Int., 2014, 40: 15 561-15 168.

[18]

Gao C, Zhao H, Lv P, et al. Engineered Si Sandwich Electrode: Si Nanoparticles/graphite Sheet Hybrid on Ni Foam for Next–generation High–performance Lithium–ion Batteries[J]. ACS Appl. Mater. Interfaces, 2015, 7: 1 693-1 698.

[19]

Zhang W, Zhu J, Ang H, et al. Binder–free Graphene Foams for O2 Electrodes of Li–O2 Batteries[J]. Nanoscale, 2013, 5: 9 651-9 664.

[20]

Yang C, Zhang D, Zhao Y, et al. Nickel Foam Supported Sn–Co Alloy Film as Anode for Lithium Ion Batteries[J]. J. Power Sources, 2011, 196: 10 673-10 678.

[21]

Zhou Y, Liu Q, Liu DB, et al. Carbon–coated MoO2 Dispersed in Three–dimensional Graphene Aerogel for Lithium–ion Battery[J]. Electrochim. Acta, 2015, 174: 8-14.

[22]

Guo W, Sun W, Wang Y. Multilayer CuO@NiO Hollow Spheres: Microwave–assisted Metal–organic–framework Derivation and Highly Reversible Structure–matched Stepwise Lithium Storage[J]. ACS Nano, 2015, 9: 11 462-11 471.

[23]

Xia FF, Hu XL, Sun YM, et al. Layer–by–layer Assembled MoO–Graphene thin Film as a High–capacity and Binder–free Anode for Lithium–ion Batteries[J]. Nanoscale, 2012, 4: 4 707-4 711.

[24]

Wang S, Li Q, Pu W, et al. MoO3–MnO2 Intergrown Nanoparticle Composite Prepared by One–step Hydrothermal Synthesis as Anode for Lithium Ion Batteries[J]. J. Alloy. Compd., 2015, 663: 148-155.

[25]

Wei Y, Yan F, Tang X, et al. Solvent–controlled Synthesis of NiO–CoO/Carbon Fiber Nanobrushes with Different Densities and Their Excellent Properties for Lithium Ion Storage[J]. ACS Appl. Mater. Interfaces, 2015, 185: 21 703-21 711.

[26]

Jia X, Chen Z, Cui X, et al. Building Robust Architectures of Carbon and Metal Oxide Nanocrystals Toward High–performance Anodes for Lithium–ion Batteries[J]. ACS Nano, 2012, 6: 9 911-9 919.

[27]

Jung YS, Lee S, Ahn D, et al. Electrochemical Reactivity of Ballmilled MoO3–y as Anode Materials for Lithium–ion batteries[J]. J. Power Sources, 2009, 188: 286-191.

[28]

Ku JH, Jung YS, Lee KT, et al. Thermoelectrochemically Activated MoO2 Powder Electrode for Lithium Secondary Batteries[J]. J. Electrochem. Soc., 2009 A688-A693.

[29]

Zhang SS, Xu K, Jow TR. Electrochemical Impedance Study on the Low Temperature of Li–ion Batteries[J]. Electrochim. Acta, 2004, 49: 1 057-1 061.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/