Synthesis and Properties of Non-isocyanate Crystallizable Aliphatic Thermoplastic Polyurethanes

Suqing Li , Yong Deng , Jingbo Zhao , Zhiyuan Zhang , Junying Zhang , Wantai Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1275 -1280.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1275 -1280. DOI: 10.1007/s11595-018-1963-0
Organic Materials

Synthesis and Properties of Non-isocyanate Crystallizable Aliphatic Thermoplastic Polyurethanes

Author information +
History +
PDF

Abstract

A simple non-isocyanate route synthesizing thermoplastic polyurethanes (TPUs) with good thermal and mechanical properties is described. Melt transurethane polycondensation of dimethyl 1,6-hexamethylene dicarbamate with 1,4-butanediol and 1,6-hexanediol was conducted at different molar ratios under the catalysis of tetrabutyl titanate. A series of crystallizable non-isocyanate TPUs with high molecular weight were prepared. The TPUs were characterized by gel permeation chromatography, FT-IR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X-ray diffraction, AFM, and tensile tests. The TPUs exhibited M n ranging from 12 500 to 26 400 g/mol, M w from 16 700 to 56 400 g/mol, T m up to 151.4 °C, and initial decomposition temperature over 241.8 °C. Their tensile strength reached 42.99 MPa with a strain at break of 30.00%. TPUs constructed simply with butylene, hexylene, and urethane linkages were successfully synthesized through a non-isocyanate route.

Keywords

thermoplastic polyurethanes / non-isocyanate route / transurethane polycondensation / properties / dimethyl 1,6-hexamethylene dicarbamate

Cite this article

Download citation ▾
Suqing Li, Yong Deng, Jingbo Zhao, Zhiyuan Zhang, Junying Zhang, Wantai Yang. Synthesis and Properties of Non-isocyanate Crystallizable Aliphatic Thermoplastic Polyurethanes. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(5): 1275-1280 DOI:10.1007/s11595-018-1963-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Delebecq E, Pascault J P, Boutevin B, et al. On the Versatility of Urethane/urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane[J]. Chem. Rev., 2013, 113: 80-118.

[2]

Guan J, Song Y H, Lin Y, et al. Progress in Study of Non-isocyanate Polyurethane[J]. .Ind. Eng. Chem. Res., 2011, 50: 6517-6527.

[3]

Ochiai B, Endo T. Carbon Dioxide and Carbon Disulfide as Resources for Functional Polymers[J]. Prog. Polym. Sci., 2005, 30: 183-215.

[4]

Kathalewar M S, Joshi P B, Sabnis A S, et al. Non-isocyanate Polyurethanes: from Chemistry to Applications[J]. RSC Adv., 2013, 3: 4110-4129.

[5]

Tamami B, Sohn S, Wilkes G L. Incorporation of Carbon Dioxide into Soybean Oil and Subsequent Preparation and Studies of Nonisocyanate Polyurethane Networks[J]. J. Appl. Polym. Sci., 2004, 92: 883-891.

[6]

Brocas A L, Cendejas G, Deffieux A, et al. Controlled Synthesis of Polyepichlorohydrin with Pendant Cyclic Carbonate Functions for Isocyanate-free Polyurethane Networks[J]. J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 2677-2684.

[7]

Diakoumakos C D, Kotzev D L. Non-isocyanate-based Polyurethanes Derived upon the Reaction of Amines with Cyclocarbonate Resins[J]. Macromol. Symp., 2004, 216: 37-46.

[8]

Ochiai B, Inoue S, Endo T. One-pot Non-isocyanate Synthesis of Polyurethanes from Bisepoxide, Carbon Dioxide, and Diamine[J]. J. Polym. Sci., Part A: Polym. Chem., 2005, 43: 6613-6618.

[9]

Annunziata L, Diallo A K, Fouquay S, et al. α,ω-Di(glycerol carbonate) Telechelic Polyesters and Polyolefins as Precursors to Polyhydroxyurethanes: An Isocyanate-free Approach[J]. Green Chem., 2014, 16: 1947-1956.

[10]

Bähr M, Bitto A, Mülhaupt R. Cyclic Limonene Dicarbonate as a New Monomer for Non-isocyanate Oligo-and Polyurethanes (NIPU) Based upon Terpenes[J]. Green Chem., 2012, 14: 1447-1454.

[11]

Bähr M, Mülhaupt R. Linseed and Soybean Oil-based Polyurethanes Prepared via the Non-isocyanate Route and Catalytic Carbon Dioxide Conversion[J]. Green Chem., 2012, 14: 483-489.

[12]

Besse V, Auvergne R, Carlotti S, et al. Synthesis of Isosorbide Based Polyurethanes: An Isocyanate Free Method[J]. React. Funct. Polym., 2013, 73: 588-594.

[13]

Maier S, Loontjens T, Scholtens B, et al. Isocyanate-free Route to Caprolactam-blocked Oligomeric Isocyanates via Carbonylbiscaprolactam-( CBC)-mediated End Group Conversion[J]. Macromolecules, 2003, 36: 4727-4734.

[14]

Maier S, Loontjens T, Scholtens B, et al. Carbonylbiscaprolactam: A Versatile Reagent for Organic Synthesis and Isocyanate-free Urethane Chemistry[J]. Angew. Chem. Int. Ed., 2003, 42: 5094-5097.

[15]

Zimmermann J, Loontjens T, Scholtens B J R, et al. The Formation of Poly(ester-urea) Networks in the Absence of Isocyanate Monomers[J]. Biomaterials, 2004, 25: 2713-2719.

[16]

Tang D L, Mulder D, Noordover B A J, et al. Well-defined Biobased Segmented Polyureas Synthesis via a TBD-catalyzed Isocyanate-free Route[J]. Macromol. Rapid Commun., 2011, 32: 1379-1385.

[17]

Deepa P, Jayakannan M. Solvent-free and Nonisocyanate Melt Transurethane Reaction for Aliphatic Polyurethanes and Mechanistic Aspects[J]. J. Polym. Sci., Part A: Polym. Chem., 2008, 46: 2445-2458.

[18]

Deepa P, Jayakannan M. Solvent-induced Self-organization Approach for Polymeric Architectures of Micropores, Hexagons and Spheres Based on Polyurethanes Prepared via Novel Melt Transurethane Methodology[J]. J. Polym. Sci., Part A: Polym. Chem., 2007, 45: 2351-2366.

[19]

Rokicki G, Piotrowska A. A New Route to Polyurethanes from Ethylene Carbonate, Diamines and Diols[J]. Polymer, 2002, 43: 2927-2935.

[20]

Ochiai B, Utsuno T. Non-isocyanate Synthesis and Application of Telechelic Polyurethanes via Polycondensation of Diurethanes Obtained from Ethylene Carbonate and Diamines[J]. J. Polym. Sci., Part A: Polym. Chem., 2013, 51: 525-533.

[21]

Sharma B, Ubaghs L, Keul H, et al. Synthesis and Characterization of Alternating Poly(amide urethane)s from e-Caprolactam, Amino Alcohols, and Diphenyl Carbonate[J]. Polymer, 2004, 45: 5427-5440.

[22]

Sharma B, Ubaghs L, Keul H, et al. Synthesis and Characterization of Alternating Poly(amide urethane)s from e-Caprolactone, Diamines and Diphenyl Carbonate[J]. Polymer, 2005, 46: 1775-1783.

[23]

Sharma B, Ubaghs L, Keul H, et al. Microstructure and Properties of Poly(amide urethane)s: Comparison of the Reactivity of a-Hydroxy-?-?-phenyl Urethanes and a-Hydroxy-?-?-hydroxyethyl Urethanes[J]. Macromol. Chem. Phys., 2004, 205: 1536-1546.

[24]

Li C G, Li S Q, Zhao J B, et al. Synthesis and Characterization of Aliphatic Poly(amide urethane)s Having Different Nylon 6 Segments through Non-isocyanate Route[J]. J. Polym. Res., 2014, 21: 498.

[25]

Li S Q, Zhao J B, Zhang Z Y, et al. Synthesis and Characterization of Aliphatic Segmented Poly(ether amide urethane)s through a Non-isocyanate Route[J]. RSC Adv., 2014, 4: 23720-23729.

[26]

Deng Y, Li S Q, Zhao J B, et al. Crystallizable and Tough Aliphatic Thermoplastic Poly(ether urethane)s Synthesized through a Non-isocyanate Route[J]. RSC Adv., 2014, 4: 43406-43414.

[27]

Deng Y, Li S Q, Zhao J B, et al. Aliphatic Thermoplastic Poly(ether urethane)s Having Long PEG Sequences Synthesized through a Non-isocyanate Route[J]. Chin. J. Polym. Sci., 2015, 33: 880-889.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/