Isothermal Crystallization Kinetics of Nylon 10T and Nylon 10T/1010 Copolymers: Effect of Sebacic Acid as a Third Comonomer

Zhongqiang Wang , Guosheng Hu , Jingting Zhang , Jiusheng Xu , Wenbo Shi

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1247 -1255.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1247 -1255. DOI: 10.1007/s11595-018-1959-9
Organic Materials

Isothermal Crystallization Kinetics of Nylon 10T and Nylon 10T/1010 Copolymers: Effect of Sebacic Acid as a Third Comonomer

Author information +
History +
PDF

Abstract

Nylon 10T and nylon 10T/1010 samples were synthesized by direct melt polymerization. The isothermal crystallization kinetics of nylon 10T and nylon 10T/1010 was investigated by means of differential scanning calorimetry (DSC). The crystallization kinetics under isothermal condition has been analyzed by the Avrami equation. It was found that the Avrami equation was well-suited to describe the isothermal crystallization kinetics, combined with the results of the Turnbull-Fisher equation. The values of T m 0 and K g were obtained by Hoffman-Weeks and Lauritzen-Hoffman equations, respectively. The activation energies for isothermal crystallization of nylon 10T and nylon 10T/1010 were determined using the Arrhenius equation and found to be -123.24 and -81.86 kJ·mol-1, respectively, which reveals that the crystallization ability of nylon 10T/1010 was lower than that of nylon 10T during the isothermal crystallization process. The crystal morphology was observed by means of polarized optical microscopy (POM) and X-ray diffraction (XRD). It was found that the addition of sebacic acid comonomer did not change the crystal form of nylon 10T, but significantly increased the number and decreased the size of spherulites.

Keywords

melt polymerization / nylon 10T / nylon 10T/1010 / semiaromatic polyamides / crystallization kinetics / isothermal crystallization

Cite this article

Download citation ▾
Zhongqiang Wang, Guosheng Hu, Jingting Zhang, Jiusheng Xu, Wenbo Shi. Isothermal Crystallization Kinetics of Nylon 10T and Nylon 10T/1010 Copolymers: Effect of Sebacic Acid as a Third Comonomer. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(5): 1247-1255 DOI:10.1007/s11595-018-1959-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J, Beake BD, Bell GA, et al. Investigation of the Nanomechanical Properties of Nylon 6 and Nylon 6/Clay Nanocomposites at Sub-Ambient Temperatures[J]. Journal of Experimental Nanoscience, 2016, 11(9): 695-706.

[2]

Wang WZ, Zhang YH. Environment-Friendly Synthesis of Long Chain Semiaromatic Polyamides[J]. Express Polymer Letters, 2009, 3(8): 470-476.

[3]

Wang WZ, Zhang YH. Synthesis of Semiaromatic Polyamides Based on Decanediamine[J]. Chinese Journal of Polymer Science, 2010, 28(4): 467-473.

[4]

Zhang CL, Wan L, Gu XP, et al. A Study on a Prepolymerization Process of Aromatic-Contained Polyamide Copolymers Pa(66-co-6T) via One-Step Polycondensation[J]. Macromolecular Reaction Engineering, 2015, 9(5): 512-521.

[5]

Rwei SP, Tseng YC, Chiu KC, et al. The Crystallization Kinetics of Nylon 6/6T and Nylon 66/6T Copolymers[J]. Thermochimica Acta, 2013, 555(5): 37-45.

[6]

Uddin AJ, Ohkoshi Y, Gotoh Y, et al. Influence of Moisture on the Viscoelastic Relaxations in Long Aliphatic Chain Contained Semiaromatic Polyamide, (PA9-T) Fiber[J]. Journal of Polymer Science Part B-Polymer Physics, 2003, 41(22): 2878-2891.

[7]

Uddin AJ, Gotoh Y, Ohkoshi Y, et al. Hydration in a New Semiaromatic Polyamide Observed by Humidity-Controlled Dynamic Viscoelastometry and X-ray Diffraction[J]. Journal of Polymer Science Part B-Polymer Physics, 2005, 43(13): 1640-1648.

[8]

Wang WZ, Wang XW, Li RX, et al. Environment-Friendly Synthesis of Long Chain Semiaromatic Polyamides with High Heat Resistance[J]. Journal of Applied Polymer Science, 2009, 114(4): 2036-2042.

[9]

Zhang CH, Huang XB, Zeng XB, et al. Fluidity Improvement of Semiaromatic Polyamides: Modification with Oligomers[J]. Journal of Applied Polymer Science, 2014, 131(7): 5621-5633.

[10]

Novitsky TF, Mathias LJ. One-Pot Synthesis of Polyamide 12,T-polyamide-6 Block Copolymers[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2011, 49(10): 2271-2280.

[11]

Novitsky TF, Mathias LJ, Osborn S, et al. Synthesis and Thermal Behavior of Polyamide 12,T Random and Block Copolymers[J]. Macromolecular Symposia, 2012, 313-314(1): 90-99.

[12]

Novitsky TF, Lange CA, Mathias LJ, et al. Eutectic Melting Behavior of Polyamide 10,T-co-6,T and 12,T-co-6,T Copolyterephthalamides[J]. Polymer, 2010, 51(11): 2417-2425.

[13]

Battegazzore D. Bulk Vs Surface Flame Retardancy of Fully Bio-Based Polyamide 10,10[J]. RSC Advances, 2015, 5(49): 39424-39432.

[14]

Dong JX, Qu JH, Feng XY, et al. Development Status and Prospects of World Bio-Based Polyamides[J]. China Synthetic Fiber Industry, 2015, 38(5): 51-56.

[15]

Zhang XK, Xie TX, Yang GS. Isothermal Crystallization and Melting Behaviors of Nylon 11/Nylon 66 Alloys by in Situ Polymerization[J]. Polymer, 2006, 47(6): 2116-2126.

[16]

Ferreira CI, Castel CD, Oviedo MAS, et al. Isothermal and Non-Isothermal Crystallization Kinetics of Polypropylene/Exfoliated Graphite Nanocomposites[J]. Thermochimica Acta, 2013, 553(3): 40-48.

[17]

Neugebauer F, Ploshikhin V, Ambrosy J, et al. Isothermal and Non-Isothermal Crystallization Kinetics of Polyamide 12 Used in Laser Sintering[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(2): 925-933.

[18]

Gradys A, Sajkiewicz P, Zhuravlev E, et al. Kinetics of Isothermal and Non-Isothermal Crystallization of Poly(Vinylidene Fluoride) by Fast Scanning Calorimetry[J]. Polymer, 2016, 82: 40-48.

[19]

Zhang YS, Wang BB, Hu GS. Isothermal Crystallization Kinetics and Melting Behavior of Polyamide 11/Silica Nanocomposites Prepared by in Situ Melt Polymerization[J]. Journal of Applied Polymer Science, 2012, 123(1): 273-279.

[20]

Shashidhara GM, Pradeepa KG. Isothermal Crystallization of Polyamide 6/Liquid Natural Rubber Blends at High under Cooling[J]. Thermochimica Acta, 2014, 578(4): 1-9.

[21]

Liu HX, Huang YY, Yuan L, et al. Isothermal Crystallization Kinetics of Modified Bamboo Cellulose/PCL Composites[J]. Carbohydrate Polymers, 2010, 79(3): 513-519.

[22]

Cai J, Liu M, Wang L, et al. Isothermal Crystallization Kinetics of Thermoplastic Starch/Poly(Lactic Acid) Composites[J]. Carbohydrate Polymers, 2011, 86(2): 941-947.

[23]

Liu SY, Yu YN, Yi C, et al. Isothermal and Nonisothermal Crystallization Kinetics of Nylon-11[J]. Journal of Applied Polymer Science, 1998, 70(12): 2371-2380.

[24]

Ge CH, Ding P, Shi LY, et al. Isothermal Crystallization Kinetics and Melting Behavior of Poly(Ethylene Terephthalate)/Barite Nanocomposites[J]. Journal of Polymer Science Part B-Polymer Physics, 2009, 47(7): 655-668.

[25]

Run MT, Song HZ, Wang SJ, et al. Crystal Morphology, Melting Behaviors and Isothermal Crystallization Kinetics of SCF/PTT Composites[J]. Polymer Composites, 2009, 30(1): 87-94.

[26]

He H, Gu LX, Ozaki Y. Non-Isothermal Crystallization and Thermal Transitions of a Biodegradable, Partially Hydrolyzed Poly (Vinyl Alcohol)[J]. Polymer, 2006, 47(11): 3935-3945.

[27]

Liao RG, Yang B, Yu W, et al. Isothermal Cold Crystallization Kinetics of Polylactide/Nucleating Agents[J]. Journal of Applied Polymer Science, 2007, 104(1): 310-317.

[28]

Liu MY, Zhao QX, Wang YD, et al. Melting Behaviors, Isothermal and Non-Isothermal Crystallization Kinetics of Nylon 1212[J]. Polymer, 2003, 44(8): 2537-2545.

[29]

Zou P, Tang SW, Fu ZZ, et al. Isothermal and Non-Isothermal Crystallization Kinetics of Modified Rape Straw Flour/High-Density Polyethylene Composites[J]. International Journal of Thermal Sciences, 2009, 48(4): 837-846.

[30]

Hoffman JD, Miller RL. Kinetic of Crystallization From the Melt and Chain Folding in Polyethylene Fractions Revisited: Theory and Experiment[J]. Polymer, 1997, 38(13): 3151-3212.

[31]

Cai J, Liu M, Wang L, et al. Isothermal Crystallization Kinetics of Thermoplastic Starch/Poly(Lactic Acid) Composites[J]. Carbohydrate Polymers, 2011, 86(2): 941-947.

[32]

Kalkar AK, Deshpe VD, Kulkarni MJ. Isothermal Crystallization Kinetics of Poly(Phenylene sulfide)/TLCP Composites.[J]. Polymer Engineering and Science, 2009, 13(s1-4): 651-654.

[33]

Tjong SC, Chen SX, Li RKY. Crystallization Kinetics of Compatibilized Blends of a Liquid Crystalline Polymer with Polypropylene[J]. Journal of Applied Polymer Science, 1997, 64(4): 707-715.

[34]

Biber E, Gündüz G, Mavis B, et al. Compatibility Analysis of Nylon 6 and Poly(Ethylene-N-Butyl Acrylate-Maleic Anhydride) Elastomer Blends Using Isothermal Crystallization Kinetics[J]. Materials Chemistry and Physics, 2010, 122(1): 93-101.

[35]

Lin CC. The Rate of Crystallization of Poly(Ethylene Terephthalate) by Differential Scanning Calorimetry[J]. Polymer Engineering and Science, 1983, 23(3): 113-116.

[36]

Zhu G, Li CC, Li ZY. The Effects of Alkali Dehydroabietate on the Crystallization Process of Polypropylene[J]. European Polymer Journal, 2001, 37(5): 1007-1013.

[37]

Neugebauer F, Ploshikhin V, Ambrosy J, et al. Isothermal and Non-Isothermal Crystallization Kinetics of Polyamide 12 Used in Laser Sintering[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(2): 925-933.

[38]

Liu TX, Mo ZS, Wang SE, et al. Isothermal Melt and Cold Crystallization Kinetics of Poly(Aryl Ether Ether Ketone Ketone) (PEEKK)[J]. European Polymer Journal, 1997, 33(9): 1405-1414.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/