Synthesis and Photovoltaic Properties of Novel Porphyrin Derivatives

Yaqin Xia , Jinming Zeng , Xiaoyuan Zhang , Jianyan Cai , Biaobiao Zhu , Li Zhou , Ping Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1228 -1238.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1228 -1238. DOI: 10.1007/s11595-018-1957-y
Organic Materials

Synthesis and Photovoltaic Properties of Novel Porphyrin Derivatives

Author information +
History +
PDF

Abstract

The porphyrin derivatives, 5,10,15,20-tetra(4-(N-pentane-carboxamide) phenyl) porphyrin (4NC5-TPP), 5,10,15,20-tetra(4-(N-dodecane-carboxamide) phenyl) porphyrin (4NC12-TPP) and their zinc-complexes (4NC5-TPPZn and 4NC12-TPPZn), have been synthesized. Their thermal properties and morphologies were investigated via thermal gravity analysis (TGA), differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that the 4NC5-TPP was amorphous and the 4NC5-TPPZn was crystalline at room temperature, while the 4NC12-TPP formed the columnar liquid crystal and the 4NC12-TPPZn showed the spherulite texture. The electron state density distributions and the optimum configuration of the porphyrin derivatives were calculated by chemical simulation. The electrochemical oxidation and reduction abilities of the porphyrin derivatives were studied by cyclic voltammetry (CV). It was indicated that the porphyrin derivatives had the potential to develop organic photovoltaic (OPV) devices. Using the porphyrin derivatives as donor materials and the 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) as the acceptor material, the OPV devices were fabricated. The device structure is ITO/porphyrin derivatives:PTCDA/Al. The relationship between the morphology and performance of OPV was studied. It was found that the crystalline morphology of the film was beneficial to improve the efficiency of the devices.

Keywords

porphyrin / metalloporphyrins / columnar liquid crystal / organic photovoltaic device / organic photovoltaic performance

Cite this article

Download citation ▾
Yaqin Xia, Jinming Zeng, Xiaoyuan Zhang, Jianyan Cai, Biaobiao Zhu, Li Zhou, Ping Liu. Synthesis and Photovoltaic Properties of Novel Porphyrin Derivatives. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(5): 1228-1238 DOI:10.1007/s11595-018-1957-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blumstengel S, Jandke M, Strohriegl P, et al. Long-Range Energy Transfer of Singlet and Triplet Excitations in Dye-doped Tris (phenylquinoxaline)[J]. J. Chem. Phys., 2001, 115(7): 3249-3255.

[2]

Michael G W, Alexander B R, Carl C Wamser. Porphyrins and Phthalocyanines in Solar Photovoltaic Cells[J]. J. Porphyrins Phthalocyanines, 2010, 14(9): 759-792.

[3]

Kang Min S, Kin K, Park N-G, et al. Novel Extended p-conjugated Zn(II))-porphyrin Derivatives Bearing Pendant Triphenylamine Moiety for Dye-sensitized Solar Cell: Synthesis and Characterization[J]. J. Porphyr. Phthalocya., 2009, 13(7): 798-804.

[4]

Jeff R, Wei Y, Michael J T, et al. Tailoring Porphyrin-Based Electron Accepting Materials for Organic Photovoltaics[J]. J. Am. Chem. Soc., 2014, 136(50): 17561-17569.

[5]

Challuri Vijay K, Ganesh D S, Emilio P, et al. Synthesis, Optical and Electrochemical Properties of the A–p-D–p-A Porphyrin and Its Application as an Electron Donor in Efficient Solution Processed Bulk Heterojunction Solar Cells[J]. Nanoscale, 2015, 7(1): 179-189.

[6]

Liu F, Janssen René A J, Peng X, et al. Deep Absorbing Porphyrin Small Molecule for High Performance Organic Solar Cells with Very Low Energy Losses[J]. J. Am. Chem. Soc., 2015, 137(23): 7282-7285.

[7]

Sergey L, Raymond C K, Mark E T, et al. Molecularly Doped Polymer Light Emitting Diodes Utilizing Phosphorescent Pt(?) and Ir(?) Dopants[J]. Org. Electron., 2001, 2(1): 53-62.

[8]

Masamichi I, Kawabata S, Kajioka T, et al. Enhancement of External Quantum Efficiency of Red Phosphorescent Organic Light-emitting Devices with Facially Encumbered and Bulky PtII Porphyrin Complexes [J]. Adv. Funct. Mater., 2006, 16(16): 515-519.

[9]

Victor A M, César P-B, Pavel A, et al. Molecular-Wire Behavior of OLED Materials: Exciton Dynamics in Multichromophoric Alq3-Oligo-fluorene-Pt(II)porphyrin Triads[J]. J. Am. Chem. Soc., 2006, 128(38): 12436-12438.

[10]

Zhua L-J, Wang J, Guo C-C, et al. Effect of Substituent Groups of Porphyrins on the Electroluminescent Properties of Porphyrin-Doped OLED Devices[J]. J. Phys. Org. Chem., 2010, 23(3): 190-194.

[11]

Mohammad R J, Bahram Bahrami. Emission Properties of Porphyrin Pompounds in New Polymeric PS:CBP Host[J]. Appl. Phys. A, 2015, 119(4): 1491-1497.

[12]

Zhou W, Duan X-M, Zhan X, et al. A Low-bandgap Conjugated Copolymer Based on Porphyrin and Dithienocoronene Diimide with Strong Two-Photon Absorption[J]. Macromolecules, 2012, 45(19): 7823-7828.

[13]

Choi S, Choi D H, Lee S J, et al. An Unsymmetrically p-extended Porphyrin-based Single-crystal Field-effect Transistor and Its Anisotropic Carrier-transport Behavior[J]. Chem. Eur. J., 2013, 19(7): 2247-2251.

[14]

Eunhye B, Larysa B, Gianaurelio C, et al. Optoelectronic Switching of Nanowire-based Hybrid Organic/Oxide/Semiconductor Field-Effect Transistors[J]. Nano. Res., 2015, 8(4): 1229-1240.

[15]

Richard J B, Owen R Lozman. Discotic Liquid Crystals 25 Years on[J]. Curr. Opin. Colloid Interface Sci., 2002, 7(5-6): 343-354.

[16]

Peter C M C, Albertus P H J S, Klaus M, et al. High Anisotropy of the Field-effect Transistor Mobility in Magnetically Aligned Discotic Liquid-crystalline Semiconductors[J]. J. Am. Chem. Soc., 2005, 127(46): 16233-16237.

[17]

Brindaban R, Nirupam D, Krishna C Majumdar. Advances in Metal-free Heterocycle-based Columnar Liquid Crystals[J]. Chem. Eur. J., 2012, 18(46): 14560-14588.

[18]

Ammar A K, Girish R, Alessandro S, et al. Homologous Binary Mixtures and Improved Hole Conduction of Self-assembled Discotic Liquid Crystals[J]. Org. Electron., 2016, 36: 35-44.

[19]

Richard J B, Owen R Lozman. Photoconducting Liquid Crystals[J]. Curr. Opin. Solid State Mater. Sci., 2002, 6(6): 569-578.

[20]

Klaus M, Henning S, Richard H F, et al. Meso-epitaxial Solution-growth of Self-organizing Discotic Liquid-crystalline Semiconductor[J]. Adv. Mater., 2003, 15(6): 495-499.

[21]

Brian A G, Russell A Cormier. Doping Molecular Semiconductors: n-type Doping of a Liquid Crystal Perylene Diimide[J]. J. Am. Chem. Soc., 2001, 123(123): 7959-7960.

[22]

Shin-ichiro K, Yukari I, Kentaro Tanaka. Columnar Liquid-crystalline Metallomacrocycles[J]. J. Am. Chem. Soc., 2015, 137(6): 2295-2302.

[23]

Neville B, Richard J B, Andrew N C, et al. Transient Photoconductivity and Dark Conductivity in Discotic Liquid Crystals[J]. Mol. Cryst. Liq. Cryst., 2006, 261(1): 251-257.

[24]

Müllen K, Friend RH, MacKenziel JD, et al. Self-Organized Discotic Liquid Crystals for High-efficiency Organic Photovoltaics[J]. Sci., 2001, 293(5532): 1119-1122.

[25]

Liu P, Li Q, Huang M, et al. High Open Circuit Voltage Organic Photovoltaic Cells Based on Oligothiophene Derivatives[J]. Appl. Phys. Lett., 2006, 89(21): 213501

[26]

Guan L, Liu P, Deng W, et al. Synthesis and Photovoltaic Poperties of Donor-acceptor Oligothiophene Derivatives Possessing Mesogenic Properties[J]. Synth. Commun., 2011, 41(24): 3662-3670.

[27]

Hu J, Liu P, Deng W, et al. Influence of the Molecular Orientation of Oligothiophene Derivatives in Vacuum-evaporated Thin Films on Photovoltaic Properties[J]. Dyes and Pigments, 2014, 100(1): 158-161.

[28]

Goodby JW, Teo B-K, Cladi PE, et al. The Discotic Phase of Uro-porphyrin I Octa-N-Dodecyl Estei[J]. Mol. Cryst. Liq. Cryst., 1980, 56(10): 303-309.

[29]

Mohammadreza A, Yousef F, Helma K, et al. Production, Nano-purification, Radiolabeling and Biodistribution Study of [140Nd] 5,10,15,20-tetraphenylporphyrin Complex as A Possible Imaging Agent[J]. J. Radioanal. Nucl. Ch., 2013, 295(1): 105-113.

[30]

Arunkumar C, Bhyrappa P, Varghese B. Synthesis and Axial Ligation Behaviour of Sterically Hindered Zn(II)–porphyrin Liquid Crystals[J]. Tetrahedron Lett., 2006, 47(46): 8033-8037.

[31]

Castella M, López-Calahorra F, Finkelmann H, et al. The First Asymmetrically β-polysubstituted Porphyrin-based Hexagonal Columnar Liquid Crystal [J]. Chem. Commun., 2002, 34(9): 2348-2349.

[32]

Antoni S, Francisco L-C, Dolores V, et al. Synthesis and Characterization of Unsymmetrically β-substituted Porphyrin Liquid Crystals: Influence of the Chemical Structure on the Mesophase Ordering[J]. Chem. Mater., 2005, 17(21): 5366-5374.

[33]

Kang S-W, Nakata M, Kumar S, et al. Microfocus X-ray Diffraction Study of the Columnar Phase of Porphyrin-based Mesogens[J]. Chem. Mater., 2007, 19(23): 5657-5663.

[34]

Marcin S, Bertrand D, Jonathan L Sessler. Discotic Liquid-Crystalline Materials Based on Porphycenes: A Mesogenic Metalloporphycene-Metracyanoquinodimethane (TCNQ) Adduct[J]. Chem. Eur. J., 2007, 13(24): 6853-6863.

[35]

Li L, Kumar S, Li Q, et al. Nature-Inspired Light-harvesting Liquid Crystalline Porphyrins for Organic Photovoltaics[J]. Liq. Cryst., 2008, 35(3): 233-239.

[36]

Hideyuki T, Yutaka M, Eiichi N, et al. Organic Solid Solution Composed of Two Structurally Similar Porphyrins for Organic Solar Cells[J]. J. Am. Chem. Soc., 2015, 137(6): 2247-2252.

[37]

Eskelsen J R, Hipps K W, Mazur U, et al. Hyperbranched Crystalline Nanostructure Produced from Ionic p-Conjugated Molecules[J]. Chem. Commun., 2015, 51(13): 2663-2666.

[38]

Mori H, Kim D, Osuka A, et al. meso-meso Linked Porphyrin-[26]Hexaphyrin-Porphyrin Hybrid Arrays and Their Triply Linked Tapes Exhibiting Strong Absorption Bands in the NIR Region[J]. J. Am. Chem. Soc., 2015, 137(5): 2097-2106.

[39]

Russell T P, Wu H, Peng X, et al. Multi-Length-Scale Morphologies Driven by Mixed Additives in Porphyrin-based Organic Photovoltaics[J]. Adv. Mater., 2016, 28(23): 4727-4733.

[40]

Qin H, Cao Y, Peng X, et al. Solution-processed Bulk Heterojunction Solar Cells Based on a Porphyrin Small Molecule with 7% Power Conversion Efficiency[J]. Energ. Environ. Sci., 2014, 7(4): 1397-1401.

[41]

Zhang K, Huang F, Yip H-L, et al. High-Performance Polymer Tandem Solar Cells Employing a New n-Type Conjugated Polymer as an Interconnecting Layer[J]. Adv. Mater., 2016, 28(24): 4817-4823.

[42]

Zhao Y, Truhlar D G. Density Functionals with Broad Applicability in Chemistry[J]. Accounts Chem. Res., 2008, 41(2): 157-167.

[43]

Zhao Y, Truhlar D G. A New Local Density Functional for Main-group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions[J]. J. Chem. Phys., 2006, 125(19): 194101

[44]

Hou J, Yang C, Li Y, et al. Synthesis and Photovoltaic Properties of Two-dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains[J]. J. Am. Chem. Soc., 2006, 128(14): 4911-4916.

[45]

Hou J, Yang C, Li Y, et al. Synthesis and Absorption Apectra of Poly(3-(phenylenevinyl) thiophenes) with Conjugated Side Chains[J]. Mecromolecules, 2006, 39(2): 594-603.

[46]

Liu T-Z, Chen Yun. Synthesis, Optical and Electrochemical Properties of Luminescent Polymers Containing 1,2-diphenylmaleimide and Thiophene Segments[J]. Polymer, 2005, 46(23): 10383-10391.

[47]

Forrest Stephen R. Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques[J]. Chem. Rev., 1997, 97(6): 1793-1896.

[48]

Eastwood D, Gouterman M. Porphyrins: XII. Luminescence of Copper Complexes at Liquid Nitrogen Temperature[J]. J. Mol. Spectrosc., 1969, 30(1): 437-458.

[49]

Chen Z, Stepanenko V, Dehm V, et al. Photoluminescence and Conductivity of Self-assembled pi-pi Stacks of Perylene Bisimide Dyes.[J]. Chemistry, 2007, 13(2): 436-449.

[50]

Takeaki S, Kazuhiro S, Katsuhiro A, et al. Control of Molecular Orientation of Organic p-i-n Structures by Using Molecular Templating Effect at Heterointerfaces[J]. Org. Electron., 2007, 8(6): 702-708.

[51]

Takeshi Y, Satoshi O, Shu H, et al. Direct Formation of Thin Single Crystals of Organic Semiconductors onto a Substrate[J]. Chem. Mater., 2007, 19(15): 3748-3753.

[52]

Zhao X Q, Liu P, Deng W J, et al. Influence of Morphology of Vacuum-Evaporated Oligothiophene Derivative Films on Oganic Photovoltaic Performance[J]. Solid State Phenom., 2012, 181-182: 320-323.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/