Extraction Difficulty of Lithium Ions from Various Crystal Planes of Lithium Titanate

Liyuan Zhang , Jiabei Zhou , Gang He , Dali Zhou , Dahai Tang , Fahou Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1086 -1091.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1086 -1091. DOI: 10.1007/s11595-018-1939-0
Advanced Materials

Extraction Difficulty of Lithium Ions from Various Crystal Planes of Lithium Titanate

Author information +
History +
PDF

Abstract

To study the extraction difficulty of lithium ions from various crystal planes of Li2TiO3, according to the first principle, four representative crystal surfaces of Li2TiO3 (precursor), (-133), (-206), (002) and (-131), were selected to establish a model and to calculate the surface energy, bond length and population using Materials Studio 5.5 (MS 5.5). The results demonstrate that there is no direct relationship between the surface energy and the order of disappearance of the four diffraction peaks when lithium titanate is treated with hydrochloric acid, instead, the difficulty of Li+ extraction from various crystal faces corresponds to the Li-O bond strength. Lithium ion is easy to remove from (-133) and (-206) due to the relatively weak Li-O bond strength. In contrast, Li+ extraction requires a longer time for (002) and (-131).

Keywords

lithium titanate / crystal face / surface energy / bond length / bond population

Cite this article

Download citation ▾
Liyuan Zhang, Jiabei Zhou, Gang He, Dali Zhou, Dahai Tang, Fahou Wang. Extraction Difficulty of Lithium Ions from Various Crystal Planes of Lithium Titanate. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(5): 1086-1091 DOI:10.1007/s11595-018-1939-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hamzaoui A H, Hammi H, M’nif A. Operating Conditions for Lithium Recovery from Natural Brines[J]. Russ. J. Inorg. Chem., 2007, 52: 1859-1863.

[2]

Van Ginkel S W, Tang Y, Rittmann B E. Impact of Precipitation on the Treatment of Real Ion-exchange Brine Using the H2-based Membrane Biofilm Reactor[J]. Water Sci. Technol., 2011, 63: 1453-1458.

[3]

Chitrakar R, Makita Y, Ooi K, et al. Lithium Recovery from Salt Lake Brine by H2TiO3[J]. Dalton T., 2014, 43: 8933-8939.

[4]

Shi X C, Zhang Z B, Zhou D F, et al. Synthesis of Li+ Adsorbent (H2TiO3) and Its Adsorption Properties[J]. T. Nonferr. Metal. Soc., 2013, 23: 253-259.

[5]

Tian L, Wei M, Han M. Adsorption Behavior of Li+ onto Nanolithium Ion Sieve from Hybrid Magnesium/Lithium Manganese Oxide[J]. Chem. Eng. J., 2010, 156: 134-140.

[6]

Nugroho A, Kim S J, Chung K Y, et al. Facile Synthesis of Nanosized Li4Ti5O12 in Supercritical Water[J]. Electrochem. Commun., 2011, 13: 650-653.

[7]

Zhang L, Zhou D, He G, et al. Effect of Crystal Phases of Titanium Dioxide on Adsorption Performance of H2TiO3-lithium Adsorbent[J]. Mater. Lett., 2014, 135: 206-209.

[8]

Du Y-e, Du D, Feng Q, et al. Delithation, Exfoliation, and Transformation of Rock-Salt-Structured Li2TiO3 to Highly Exposed {010}-Faceted Anatase[J]. ACS Appl. Mater. Inter., 2015, 7: 7995-8004.

[9]

Zhang L, He G, Zhou D, et al. Study on Transformation Mechanism of Lithium Titanate Modified with Hydrochloric Acid[J]. Ionics, 2016, 22: 2007-2014.

[10]

Kataoka K, Takahashi Y, Kijima N, et al. Crystal Growth and Structure Refinement of Monoclinic Li2TiO3[J]. Mater. Res. Bull., 2009, 44: 168-172.

[11]

Ramaraghavulu R, Buddhudu S B, Kumar G. Analysis of Structural and Thermal Properties of Li2TiO3 Ceramic Powders[J]. Ceram. Int., 2011, 37: 1245-1249.

[12]

Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77: 3865-3868.

[13]

Perdew J P, Wang Y. Accurate and Simple Analytic Representation of the Electron-gas Correlation Energy[J]. Phys. Rev. B, 1992, 45: 13244-13249.

[14]

Chang C Y, Chen H-T, Lin M. Adsorption Configurations and Reactions of Nitric Acid on TiO2 Rutile (110) and Anatase (101) Surfaces[J]. J. Phys. Chem. C, 2009, 113: 6140-6149.

[15]

Clark S J, Segall M D, Pickard C J, et al. First Principles Methods Using CASTEP[J]. Z. Kristallogr., 2005, 220: 567-570.

[16]

Francis G, Payne M. Finite Basis Set Corrections to Total Energy Pseudopotential Calculations[J]. J. Phys.-Condens. Mat., 1990, 2: 4395-4404.

[17]

Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B, 1990, 41: 7892-7895.

[18]

Monkhorst H J, Pack J D. Special Points for Brillouin-zone Integrations[J]. Phys. Rev. B, 1976, 13: 5188-5192.

[19]

Zhang Z, Fenter P, Kelly S D, et al. Structure of Hydrated Zn2+ at the Rutile TiO2 (110)-aqueous Solution Interface: Comparison of X-ray Standing Wave, X-ray Absorption Spectroscopy, and Density Functional Theory Results[J]. Geochim. Cosmochim. Ac., 2006, 70: 4039-4056.

[20]

Lu X Z H-p, Leng Y, et al. The Effects of Hydroxyl Groups on Ca Adsorption on Rutile Surfaces: a First-principles Study[J]. J. Mater. Sci.-Mater. M., 2010, 21: 1-10.

[21]

Bates S, Kresse G, Gillan M. A Systematic Study of the Surface Energetics and Structure of TiO2 (110) by First-principles Calculations[J]. Surf. Sci., 1997, 385: 386-394.

[22]

Han Y L C-j, Ge Q. Interaction of Pt Clusters with the Anatase TiO2 (101) Surface: a First Principles Study[J]. J. Phys. Chem. B, 2006, 110: 7463-7472.

[23]

Lopez N, Nørskov J K. Catalytic CO Oxidation by a Gold Nanoparticle: A Density Functional Study[J]. J. Am. Chem. Soc., 2002, 124: 11262-11263.

[24]

Perron H, Domain C, Roques J, et al. Optimisation of Accurate Rutile TiO2 (110), (100), (101) and (001) Surface Models from Periodic DFT Calculations[J]. Theor. Chem. Acc., 2007, 117: 565-574.

[25]

Mulliken R S. Electronic Structures of Polyatomic Molecules and Valence[J]. Phys. Rev., 1932, 40: 55-62.

[26]

Mulliken R S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies[J]. J. Chem. Phys., 1955, 23: 1841-1846.

[27]

Newton M D. Theoretical Probes of Bonding in the Disiloxy Group[J]. Struct. Bond. Cryst., 1981, 1: 175-193.

[28]

Brown I D, Shannon R D. Empirical Bond-Strength–Bond-Length Curves for Oxides[J]. Acta Crystallogr., Sect. A, 1973, 29: 266-282.

[29]

Geisinger K L, Gibbs G V, Navrotsky A. A Molecular Orbital Study of Bond Length and Angle Variations in Framework Structures[J]. Phys. Chem. Miner., 1985, 11: 266-283.

[30]

Tasker P W. The Stability of Ionic Crystal Surfaces[J]. J. Phys. C: Solid State Phys., 1979, 12: 4977-4984.

[31]

Watson G W, Kelsey E T, Leeuw N H D, et al. Atomistic Simulation of Dislocations, Surfaces and Interfaces in MgO[J]. J. Chem. Soc. Faraday Trans., 1996, 92: 433-438.

[32]

Azuma K, Dover C, Grinter D C, et al. Scanning Tunneling Microscopy and Molecular Dynamics Study of the Li2TiO3 (001) Surface[J]. J. Phys. Chem. C, 2013, 117: 5126-5131.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/