First Principle Calculation of NbC Precipitation Competition between TiC Particle and Ferrite Matrix

Huihui Xiong , Henghua Zhang , Huining Zhang , Lei Gan

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1076 -1081.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1076 -1081. DOI: 10.1007/s11595-018-1937-2
Advanced Materials

First Principle Calculation of NbC Precipitation Competition between TiC Particle and Ferrite Matrix

Author information +
History +
PDF

Abstract

The electronic structure, cohesive energy and interfacial energy of ferrite (100)/NbC (100) and TiC (100)/NbC (100) interfaces have been investigated by the first-principles calculation. Moreover, the heterogeneous nuclei mechanism of NbC particle was also analyzed. The results showed that the stacking sequences have a great influence on the cohesive energy and equilibrium interfacial separation of the above-mentioned interfaces. Compared with C-terminated interfaces, the cohesive energy of Nb-terminated ones is lower while the equilibrium interface distance is larger. Among the two C-terminated interface structures, the interfacial energy between the NbC and ferrite is 4.54 J/m2, which is larger than that of NbC/TiC interface (1.80 J/m2). Therefore, NbC particles prefer heterogeneous nucleation on TiC particles surface rather than the ferrite matrix, which agrees well with the experimental result.

Keywords

first-principle calculation / interface energy / cohesive energy / precipitation

Cite this article

Download citation ▾
Huihui Xiong, Henghua Zhang, Huining Zhang, Lei Gan. First Principle Calculation of NbC Precipitation Competition between TiC Particle and Ferrite Matrix. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(5): 1076-1081 DOI:10.1007/s11595-018-1937-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Johansson L I. Electronic and Structural Properties of Transition-metal Carbide and Nitride Surfaces[J]. Surf. Sci. Rep., 1995, 21(5-6): 177-250.

[2]

Arya A, Carter E A. Structure, Bonding, and Adhesion at the TiC(100)/Fe(110) Interface from First Principles[J]. J. Chem. Phys., 2003, 118(19): 8982-8996.

[3]

Liu Y, Jiang Y, Zhou R, et al. First Principles Study the Stability and Mechanical Properties of MC (M= Ti, V, Zr, Nb, Hf and Ta) Compounds[J]. J. Alloys Compd., 2014, 582(5): 500-504.

[4]

Wu L, Wang Y, Yan Z, et al. The Phase Stability and Mechanical Properties of Nb–C System: Using First-principles Calculations and Nano-indentation[J]. J. Alloys Compd., 2013, 561(5): 220-227.

[5]

Liu H, Sun F E, Sun H E, et al. Analysis of Microstructure and Mechanical Properties of Ultrafine Grained Low Carbon Steel[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(5): 1099-1104.

[6]

Nayak S, Misra R, Hartmann J, et al. Microstructure and Properties of Low Manganese and Niobium Containing HIC Pipeline Steel[J]. Mater. Sci. Eng. A, 2008, 494(1): 456-463.

[7]

Hong S G, Kang K B, Park C G. Strain-induced Precipitation of NbC in Nb and Nb-Ti Microalloyed HSLA Steels[J]. Scripta Mater., 2002, 46(2): 163-168.

[8]

Rainforth W M, Black M P, Higginson R L, et al. Precipitation of NbC in a Model Austenitic Steel[J]. Acta Mater., 2002, 50(4): 735-747.

[9]

Hin C, Bréchet Y, Maugis P, et al. Kinetics of Heterogeneous Grain Boundary Precipitation of NbC in a-iron: A Monte Carlo Study[J]. Acta Mater., 2008, 56(19): 5653-5667.

[10]

Liu L M, Wang S Q, Ye H Q. Adhesion and Bonding of the Al/TiC Interface[J]. Surf. Sci., 2004, 550(1-3): 46-56.

[11]

Liu L M, Wang S Q, Ye H Q. First-principles Study of Polar Al/TiN(111) Interfaces[J]. Acta Mater., 2004, 52(12): 3681-3688.

[12]

Wang H L, Tang J J, Zhao Y J, et al. First-principles Study of Mg/Al2MgC2 Heterogeneous Nucleation Interfaces[J]. Appl. Surf. Sci., 2015, 355(15): 1091-1097.

[13]

Yang J, Zhang P, Zhou Y, et al. First-principles Study on Ferrite/TiC Heterogeneous Nucleation Interface[J]. J. Alloys Compd., 2013, 556(15): 160-166.

[14]

Wang J, Yang J, Wang C, et al. First-principles Calculation on LaAlO3 as the Heterogeneous Nucleus of TiC[J]. Comp. Mater. Sci., 2015, 101(15): 108-114.

[15]

Liu W, Liu X, Zheng W T, et al. Surface Energies of Several Ceramics with NaCl Structure[J]. Surf. Sci., 2006, 600(2): 257-264.

[16]

Clark S J, Segall M D, Pickard C J, et al. First Principles Methods Using Castep[J]. Zeitschrift für Kristallographie-Cryst. Mater., 2005, 220(5-6): 567-570.

[17]

Segall M D, Philip J D L, Probert M J, et al. First-principles Simulation: Ideas, Illustrations and the Castep Code[J]. J. Phys.: Condens. Matter., 2002, 14(11): 2717-2728.

[18]

Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B, 1990, 41(11): 7892-7895.

[19]

White J A, Bird D M. Implementation of Gradient-corrected Exchange-correlation Potentials in Car-parrinello Total-energy Calculations[J]. Phys. Rev. B, 1994, 50(7): 4954-4957.

[20]

Fischer T H, Almlof J. General Methods for Geometry and Wave Function Optimization[J]. J.Phys. Chem., 1992, 96(24): 9768-9774.

[21]

Li H, Zhang L, Zeng Q, et al. Structural, Elastic and Electronic Properties of Transition Metal Carbides TMC (TM=Ti, Zr, Hf and Ta) from First-principles Calculations[J]. Solid State Commun., 2011, 151(8): 602-606.

[22]

Jiao Z Y, Ma S H, Zhang X Z, et al. Pressure-induced Effects on Elastic and Mechanical Properties of TiC and TiN: A DFT Study[J]. EPL-Europhysics Lett., 2013, 101(4): 46002-46006.

[23]

Chang R, Graham L J. Low-temperature Elastic Properties of ZrC and TiC[J]. J. Appl. Phys., 1966, 37(10): 3778-3783.

[24]

Gao X P, Jiang Y H, Liu Y Z, et al. Stability and Elastic Properties of NbxCy Compounds[J]. Chin. Phys. B, 2014, 23(9): 466-473.

[25]

Rudy E, Windisch S, Brukl C E. Revision of the Vanadium-Carbon and Niobium-Carbon Systems[J]. Planseeber. Pulvermet., 1968, 16(1): 3-33.

[26]

Dang D Y, Shi L Y, Fan J L, et al. First-principles Study of W-TiC Interface Cohesion[J]. Surf. Coat. Technol., 2015, 276: 602-605.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/