Detection of Methanol by a Sensor Based on Rare-earth Doped TiO2 Nanoparticles

Hongjiao Song , Wei Chen , Xun Wang , Bin Ji

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1070 -1075.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1070 -1075. DOI: 10.1007/s11595-018-1936-3
Advanced Materials

Detection of Methanol by a Sensor Based on Rare-earth Doped TiO2 Nanoparticles

Author information +
History +
PDF

Abstract

The rare earth doped TiO2 was prepared and characterized with Nd, Ho and Y as the doping agents, which have obvious absorption in visible light area. The particle size of the glomeration was about 200–400 nm. TiO2 sensor performed a significant change in resistance when exposed to methanol vapor. By comparison, the Nd, Ho and Yb doped TiO2 sensors exhibited a response of 2.22, 4.05 and 3.78, and lowered response and recovery times of 91, 56 and 67 s, respectively. The Ho doped TiO2 showed the best methanol-sensing properties, which exhibited high selectivity and response to methanol compared with the other tested vapors. In concentration of 0–10 ppm, the sensor exhibited excellent stability for detecting methanol at various concentrations.

Keywords

rare earth / TiO2 / sensor / methanol / stability

Cite this article

Download citation ▾
Hongjiao Song, Wei Chen, Xun Wang, Bin Ji. Detection of Methanol by a Sensor Based on Rare-earth Doped TiO2 Nanoparticles. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(5): 1070-1075 DOI:10.1007/s11595-018-1936-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim I, Rothschild A, Lee BH, et al. Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers[J]. Nano Letters, 2006, 6(9): 2009-2013.

[2]

Lu G, Park S, Yu K, et al. Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations[J]. Acs Nano, 2011, 5(2): 1154-1164.

[3]

Paulose M, Varghese O K, Mor G K, et al. Unprecedented Ultra-high Hydrogen Gas Sensitivity in Undoped Titania Nanotubes[J]. Nanotechnology, 2005, 17(2): 398-402.

[4]

Yang F, Kung S C, Cheng M, et al. Smaller is Faster and More Sensitive: The Effect of Wire Size on the Detection of Hydrogen by Single Palladium Nanowires[J]. Acs Nano, 2010, 4(9): 5233-5244.

[5]

Mi A L, Dong H K, Park C O, et al. A New Route toward Ultrasensitive, Flexible Chemical Sensors: Metal Nanotubes by Wet-Chemical Synthesis along Sacrificial Nanowire Templates[J]. Acs Nano, 2012, 6(1): 598-608.

[6]

Zakrzewska K, Radecka M, Rekas M. Effect of Nb, Cr, Sn Additions on Gas Sensing Properties of TiO2 Thin Films[J]. Thin Solid Films, 1997, 310(1-2): 161-166.

[7]

Di V C, Pacchioni G, Selloni A, et al. Characterization of Paramagnetic Species in N-doped TiO2 Powders by EPR Spectroscopy and DFT Calculations[J]. Journal of Physical Chemistry B, 2005, 109(23): 11414-11419.

[8]

Gopal K M, Maria A C, Ooman K V, et al. A Room-temperature TiO2-nanotube Hydrogen Sensor Able to Self-clean Photoactively from Environmental Contamination[J]. Journal of Materials Research, 2004, 19(2): 628-634.

[9]

Chang J F, Kuo H H, Leu I C, et al. The Effects of Thickness and Operation Temperature on ZnO:Al Thin Film CO Gas Sensor[J]. Sensors & Actuators B Chemical, 2002, 84(2): 258-264.

[10]

Harris L A. A Titanium Dioxide Hydrogen Detector[J]. Journal of the Electrochemical Society, 1980, 127(12): 2657-2662.

[11]

Ishikawa Y, Hara K. Thin-film Gas Sensors Operating in a Perpendicular Current Mode[J]. Sensors & Actuators B Chemical, 2013, 181(5): 932-937.

[12]

Zhang M, Yuan Z, Song J, et al. Improvement and Mechanism for the Fast Response of a Pt/TiO2, Gas Sensor[J]. Sensors & Actuators B Chemical, 2010, 148(1): 87-92.

[13]

Yamazoe N, Shimanoe K. Theory of Power Laws for Semiconductor Gas Sensors[J]. Sensors & Actuators B Chemical, 2008, 128(2): 566-573.

[14]

Barsan N, Weimar U. Conduction Model of Metal Oxide Gas Sensors[J]. Journal of Electroceramics, 2001, 7(3): 143-167.

[15]

Diebold U. The Surface Science of Titanium Dioxide[J]. Surface Science Reports, 2003, 48(5): 53-229.

[16]

Sakai G, Matsunaga N, Shimanoe K, et al. Theory of Gas-diffusion Controlled Sensitivity for Thin Film Semiconductor Gas S ensor[J]. Sensors & Actuators B Chemical, 2001, 80(2): 125-131.

[17]

Rhoderick E H. Metal-semiconductor Contacts[J]. IEE Proceedings I-Solid-State and Electron Devices, 1982, 129(1): 1

[18]

Fröhlich K, Tapajna M, Rosová A, et al. Growth of High-dielectric-constant TiO2 Films in Capacitors with RuO2 Electrodes[J]. Electrochemical and Solid-State Letters, 2008, 11(6): G19-G21.

[19]

Wetchakun K, Samerjai T, Tamaekong N, et al. Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 580-591.

[20]

Jin C, Park S, Kim H, et al. Ultrasensitive Multiple Networked Ga2O3-core/ZnO-shell Nanorod Gas Sensors[J]. Sensors and Actuators B: Chemical, 2012, 161(1): 223-228.

[21]

Atashbar M Z, Singamaneni S. Room Temperature Gas Sensor Based on Metallic Nanowires[J]. Sensors and Actuators B: Chemical, 2005, 111: 13-21.

[22]

Kukkola J, Mäklin J, Halonen N, et al. Gas Sensors Based on Anodic Tungsten Oxide[J]. Sensors and Actuators B: Chemical, 2011, 153(2): 293-300.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/