Structure and Electric Conductivity of Ce-doped Bi2O3 Electrolyte Synthesized by Reverse Titration Chemical Coprecipitation

Weijie Sun , Maohua Wang , Yong Chen , Hanping Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1056 -1061.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1056 -1061. DOI: 10.1007/s11595-018-1934-5
Advanced Materials

Structure and Electric Conductivity of Ce-doped Bi2O3 Electrolyte Synthesized by Reverse Titration Chemical Coprecipitation

Author information +
History +
PDF

Abstract

Ce-doped Bi2O3 nanopowders were prepared by reverse titration chemical coprecipitation from Bi3+ and Ce4+ containing aqueous solution. Techniques of X-ray diffraction (XRD), transmission electron microscopic (TEM) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the as-synthesized materials. The XRD patterns indicated that the peaks can be easily indexed to β-Bi2O3 and no diffraction peaks of Ce or other impurity phases were detected in the prepared samples. The calculated average crystalline size decreased from 31.72 to 11.96 nm when the Ce content increased from 1 wt% to 10 wt%. The morphology changed from flake-like into the spherical-like with increase in Ce content. The electric conductivity of Ce-doped Bi2O3 electrolyte was also investigated by two probe DC method. Conductivity analysis exhibited that the rate of conductivity increased with increasing Ce2+ ratio, when the Ce concentration was up to 5 wt%, the as-synthesized Ce-doped Bi2O3 electrolyte showed the maximum value of conductivity(0.295 S·cm–1).

Keywords

Ce-doped / Bi2O3 / reverse titration / microstructure / electric conductivity

Cite this article

Download citation ▾
Weijie Sun, Maohua Wang, Yong Chen, Hanping Zhang. Structure and Electric Conductivity of Ce-doped Bi2O3 Electrolyte Synthesized by Reverse Titration Chemical Coprecipitation. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(5): 1056-1061 DOI:10.1007/s11595-018-1934-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shuk P, Wiemhöfer H D, Guth U, et al. Oxide Ion Conducting Solid Electrolytes Based on Bi2O3[J]. Solid State Ionics, 1996, 89(3-4): 179-196.

[2]

Boivin J C. Structural and Electrochemical Features of Fast Oxide Ion Conductors[J]. J. Inorg. Mater., 2001, 3(8): 1261-1266.

[3]

Lawless W N. Solid-state Generation of Oxygen Using Ceramic Honeycombs[J]. Solid State Ionics, 1992, 52(1-3): 219-224.

[4]

Wachsman E D, Kang T L. Lowering the Temperature of Solid Oxide Fuel Cells[J]. Science, 2011, 334(6058): 935-939.

[5]

Leontie L, Caraman M, Visinoiu A, et al. On the Optical Properties of Bismuth Oxide Thin Films Prepared by Pulsed Laser Deposition[J]. Thin Solid Films, 2005, 473(2): 230-235.

[6]

And A F, Rademann K. Interaction of Bismuth Oxide Cluster Cations with Alkenes and Molecular Oxygen: Bi4O6 +, a Possible Reactive Center for Alkene Oxidation[J]. J. Phys. Chem. A, 2000, 104(104): 6979-6982.

[7]

George J, Pradeep B, Joseph K S. X-ray Diffraction Studies of Bi2O3 Films Prepared by Reactive and Activated Reactive Evaporation[J]. Thin Solid Films, 1987, 148(2): 181-189.

[8]

Sarat S, Sammes N, Smirnova A. Bismuth Oxide Doped Scandia-stabilized Zirconia Electrolyte for the Intermediate Temperature Solid Oxide Fuel Cells[J]. J. Power. Sources, 2006, 160(2): 892-896.

[9]

Klinkova L A, Nikolaichik V I, Barkovskii N V, et al. Thermal Stability of Bi2O3[J]. Russ. J. Inorg. Chem., 2007, 52(12): 1822-1829.

[10]

Virkar A V, Su P, Fung K Z. Massive Transformation in Bismuth Oxide-based Ceramics[J]. Mater. Trans., 2002, 33(8): 2433-2443.

[11]

Azad A M, Larose S, Akbar S A. Bismuth Oxide-based Solid Electrolytes for Fuel Cells[J]. J. Mater. Sci., 1993, 29(16): 4135-4151.

[12]

Drache M, Roussel P, Wignacourt J P. Structures and Oxide Mobility in Bi-Ln-O Materials: Heritage of Bi2O3[J]. Chem. Rev., 2007, 38(16): 80-96.

[13]

Lin C M, Kuo Y L, Chou C H. Effect of V2O5, Doping on Microstructure and Electrical Properties of Bi2O3-TiO2, Solid Oxide Electrolyte System[J]. Ceram. Int., 2013, 39(2): 1711-1716.

[14]

Jiang N, Eric D Wachsman. Structural Stability and Conductivity of Phase-Stabilized Cubic Bismuth Oxides[J]. J. Am. Ceram. Soc., 1999, 82(11): 3057-3064.

[15]

Wachsman E D, Boyapati S, Jiang N. Effect of Dopant Polarizability on Oxygen Sublattice Order in Phase-stabilized Cubic Bismuth Oxides[J]. Ionics, 2001, 7(1): 1-6.

[16]

Boyapati S, Wachsman E D, Jiang N. Effect of Oxygen Sublattice Ordering on Interstitial Transport Mechanism and Conductivity Activation Energies in Phase-stabilized Cubic Bismuth Oxides[J]. Solid State Ionics, 2001, 140(1-2): 149-160.

[17]

Laurent Y, Lang J, Bihan M T L. Structure D’un Nouveau Nitrure De Calcium: Ca11N8[J]. Acta. Crystallographica., 2007, 25(2): 199-203.

[18]

Huang S G, ZhouG M, Xie Y. Electrochemical Performances of Ag-(Bi2O3)0.75(Y2O3)0.25 Composite Cathodes[J]. J. Alloys. Compd., 2008, 464: 322-326.

[19]

Xu J, Jia D, Wang W, et al. Low Temperature Synthesis of BiFeO3 Nanopowders via a Sol-Gel Method[J]. J. Alloys. Compd., 2009, 472(1-2): 473-477.

[20]

Xie H, Shen D, Wang X, et al. Microwave Hydrothermal Synthesis and Visible-light Photocatalytic Activity of Bi2WO6 Nanoplates[J]. Mater. Chem. Phys., 2008, 110(2-3): 332-336.

[21]

Zhen Q, Kale G M, Shi G, et al. Processing of Dense Nanocrystalline Bi2O3-Y2O3, Solid Electrolyte[J]. Solid State Ionics, 2005, 176(37-38): 2727-2733.

[22]

Li R, Zhen Q, Drache M, et al. Preparation Mechanism of (Bi2O3)0.75(Dy2O3)0.25, Nano-crystalline Solid Electrolyte[J]. J. Alloys. Compd., 2010, 494(1): 446-450.

[23]

Singh G P, Kaur P, Kaur S, et al. Investigation of Structural, Physical and Optical Properties of CeO2-Bi2O3-B2O3, Glasses[J]. Physica B, 2012, 407(21): 4168-4172.

[24]

Wei L. Facile Synthesis of Monodisperse Bi2O3, Nanoparticles[J]. Mater. Chem. Phys., 2006, 99(1): 174-180.

[25]

Sun Y, Wang W, Zhang L, et al. Design and Controllable Synthesis of α-/γ-Bi2O3, Homojunction with Synergetic Effect on Photocatalytic Activity[J]. Chem. Eng. J., 2012, 211-212: 161-167.

[26]

Anandan S, Muthukumaran S. Influence of Yttrium on Optical, Structural and Photoluminescence Properties of ZnO Nanopowders by Solgel Method[J]. Opt. Mater., 2013, 35(35): 2241-2249.

[27]

Raghvendra S P. Influence of Bi2O3, Additive on the Electrical Conductivity of Calcia Stabilized Zirconia Solid Electrolyte[J]. J. Eur. Ceram. Soc., 2014, 35(5): 1485-1493.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/