Effects of Strains on Thermal Conductivity of Si/Ge Superlattices

Xingli Zhang , Cuizhi Gong , Guoqiang Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1051 -1055.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1051 -1055. DOI: 10.1007/s11595-018-1933-6
Advanced Materials

Effects of Strains on Thermal Conductivity of Si/Ge Superlattices

Author information +
History +
PDF

Abstract

The effect of strains on the thermal conductivity of Si/Ge superlattices was investigated by nonequilibrium molecular dynamics (NEMD) simulation. The thermal conductivities experienced a near linear drop with increasing tensile and compressive strains. It was explained by the fact that the decrease of the phonons velocities and a mass of structural defects generated under strains. Meanwhile, a theoretical calculation based on Modified-Callaway model was performed and it was found that the theoretical results were in good agreement with the molecular dynamics results.

Keywords

thermal conductivity / strains / nonequilibrium molecular dynamics / Si/Ge superlattics

Cite this article

Download citation ▾
Xingli Zhang, Cuizhi Gong, Guoqiang Wu. Effects of Strains on Thermal Conductivity of Si/Ge Superlattices. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(5): 1051-1055 DOI:10.1007/s11595-018-1933-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vijayaraghavan V, Garga A, Wong C H, et al. A Molecular Dynamics Based Artificial Intelligence Approach for Characterizing Thermal Transport in Nanoscale Material[J]. Thermochimica Acta, 2014, 594(20): 39-49.

[2]

Choi C J, Roberts N. Simple Model for Effective Thermal Conductivity of Bulk Nanostructured Materials[J]. International Journal of Thermal Sciences, 2016, 104: 13-19.

[3]

Srinivasan S, Millerm R S. On Parallel Nonequilibrium Molecular Dynamics Simulations of Heat Conduction in Heterogeneous Materials with Three-Body Potentials: Si/Ge Superlattice[J]. Numerical Heat Transfer Part B, 2007, 52: 297-321.

[4]

Wang Y J, Xie G F. Thermal Conductivity of Graphene Nanoribbons Accounting for Phonon Dispersion and Polarization[J]. Physica B: Condensed Matter, 2015, 479(15): 58-61.

[5]

Katika K, Pilon L. The Effect of Nanoparticles on the Thermal Conductivity of Crystalline Thin Films at Low Temperatures[J]. Journal of Applied Physics, 2008, 103: 114308.

[6]

Tian Z T, Hub H, Sun Y. A Molecular Dynamics Study of Effective Thermal Conductivity in Nanocomposites[J]. International Journal of Heat and Mass Transfer, 2013, 61: 577-582.

[7]

Zeng Y, Liu H H, Chen J, et al. Effect of Strain on the Electrical Resistance of Carbon Nanotube/Silicone Rubber Composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed, 2011, 26(5): 812-816.

[8]

Ross R G, Andersson P, Sundqvist B. Thermal Conductivity of Solids and Liquids under Pressure[J]. Reports on Progress in Physics, 1982, 47: 1347-1402.

[9]

Lee H F, Kumar S, Haque M A. Role of Mechanical Strain on Thermal Conductivity of Nanoscale Aluminum Films[J]. Acta Materialia, 2010, 58: 6619-6627.

[10]

Bhowmick S, Shenoy V B. Effect of Strain on the Thermal Conductivity of Solids[J]. The Journal of Chemical Physics, 2006, 125: 164513.

[11]

Zhang J, He X, Yang L. Effect of Tensile Strain on Thermal Conductivity in Monolayer Graphene Nanoribbons: A Molecular Dynamics Study[J]. Sensors, 2013, 13: 9388-9395.

[12]

Volz S, Saulnier J B, Chen G. Computation of Thermal Conductivity of Si/Ge Superlattices by Molecular Dynamics Techniques[J]. Microelectronic Journal, 2000, 31: 815-817.

[13]

Tersoff J. New Empirical Approach for the Structure and Energy of Covalent Systems[J]. Physical Review B, 1988, 37: 6991-7000.

[14]

Jund P, Jullien R. Molecular Dynamics Calculation of the Thermal Conductivity of Vitreous Silica[J]. Physical Review B, 1999, 59: 137004-137007.

[15]

Komanduri R, Chandrasekaran N, Raff L M. Molecular Dynamic Simulations of Uniaxial Tension at Nanoscale of Semiconductor Materials for Micro-Electro-Mechanical Systems (MEMS) Applications[J]. Materials Science and Engineering, 2003, 340: 58-67.

[16]

Rosenblum I, Adler J A Hoffman. Molecular-Dynamics Simulation of Thermal Stress at the (100) Diamond/Substrate Interface: Effect of Film Continuity[J]. Physical Review B, 2000, 20: 2920.

[17]

Schelling P, Phillpot S, Keblinski P. Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity[J]. Physical Review B, 2002, 6: 144306.

[18]

Lee S M C, Uenkatasubramanian R. Thermal Conductivity of Si-Ge Superlattices[J]. Applied Physics Letters, 1997, 70: 2957-2959.

[19]

Polsky Y, Bayazitoglu Y. Derivation of the Casimir Limit Phonon Distribution Using the Boltzmann Transport Equation[J]. Journal of Heat Transfer, 1995, 117(3): 751-755.

[20]

Graff A, Amouyal Y. Reduced Thermal Conductivity in Niobium-Doped Calcium-Manganate Compounds for Thermoelectric Applications[J]. Applied Physics Letters, 2014, 105: 181906.

[21]

Palmer A, Bartkowski K, Gmelin E. Thermal Conductivity of Germanium Crystals with Different Isotopic Compositions[J]. Physical Review B, 1997, 56: 9431-9447.

[22]

Morelli D, Heremans J, Slack G. Estimation of the Isotope Effect on the Lattice Thermal Conductivity of Group IV and Group VIII Semiconductors[J]. Physical Review B, 2002, 66: 195304.

[23]

Herring C. Role of Low Energy Phonons in Thermal Conduction[J]. Physical Review, 1954, 95: 954-965.

[24]

Sun L, Murthy J Y. Molecular Dynamic Simulation of Phonon Scattering at Silicon/Germanium Interfaces[J]. Journal of Heat Transfer, 2010, 132: 102403.

[25]

Ward A, Boriodo D A. Intrinsic Lattice Thermal Conductivity of Si/Ge and GaAs/AlAs Superlattice[J]. Physical Review B, 2008, 77: 245238.

[26]

R E Peierls. Quantum Theory of Solids, 1956 London: Oxford University Press.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/