Hydrothermally Synthesizing Nanospheres of Pd Loaded TiO2 for Photocatalytically Reducing CO2 in Isopropanol to Isopropyl Formate

Xiao Shao , Xiaohong Yin , Bin Wang , Xiaoxiao Yang , Xiao Han

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1046 -1050.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (5) : 1046 -1050. DOI: 10.1007/s11595-018-1932-7
Advanced Materials

Hydrothermally Synthesizing Nanospheres of Pd Loaded TiO2 for Photocatalytically Reducing CO2 in Isopropanol to Isopropyl Formate

Author information +
History +
PDF

Abstract

Photocatalytic reduction of CO2 was carried out on villiform spherical catalysts of Pd-TiO2 in isopropanol solution. The catalysts were synthesized by hydrothermal method, their structures, morphologies and optical absorption properties were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis absorption spectroscopy (UV-vis). The photocatalytic activities with different loading amounts and morphologies were evaluated for determining the dominant effect and optimizing the catalyst preparation. Based on a villiform spherical TiO2 with the largest specific surface area in our experiments, we prepared a set of catalysts with various loading amounts of palladium and tested them by bubbling CO2 through the slurry of catalyst and isopropanol. The highest formation rate of isopropyl formate was 276.6 μmol/g·cat/h. Eventually we proposed the reaction mechanism.

Keywords

photocatalytic reduction of CO2 / Pd-TiO2 / isopropanol / hydrothermal method / isopropyl formate

Cite this article

Download citation ▾
Xiao Shao, Xiaohong Yin, Bin Wang, Xiaoxiao Yang, Xiao Han. Hydrothermally Synthesizing Nanospheres of Pd Loaded TiO2 for Photocatalytically Reducing CO2 in Isopropanol to Isopropyl Formate. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(5): 1046-1050 DOI:10.1007/s11595-018-1932-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujishima A. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238(5358): 37-38.

[2]

Inoue T, Fujishima A, Konishi S, et al. Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders[J]. Nature, 1979, 277(5698): 637-638.

[3]

Kasuga T. Formation of Titanium Oxide Nanotubes Using Chemical Treatments and Their Characteristic Properties[J]. Thin Solid Film, 2006, 496(12): 141-145.

[4]

Gan X Y, Gao X D. TiO2 Nanorod-derived Synthesis of Upstanding Hexagonal Kassite Nanosheet Arrays: an Intermediate Route to Novel Nanoporous TiO2 Nanosheet Arrays[J]. Cryst.Growth Des., 2012, 12(1): 289-296.

[5]

Xu C K, Paul H Shin. Ordered TiO2 Nanotube Arrays on Transparent Conductive Oxide for Dye-Sensitized Solar Cells[J]. Chem. Mater., 2010, 22(1): 143-148.

[6]

Hou Y, Li X Y. Photoeletrocatalytic Activity of a Cu2O-Loaded Self-Orgnized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation[J]. Environ.Sci.Technol., 2009, 43(3): 858-863.

[7]

Seulgi S, K Lee. Ultrafast Growth of Highly Ordered Anodic TiO2 Nanotubes in Lactic Acid Electrolytes[J]. J.Am.Chem.Soc., 2012, 134(28): 11316-11318.

[8]

Na L, Xie Q. Fabrication of Boron-Doped TiO2 Nanotube Array Electrode and Investigation of Its Photoelectrochemical Capability[J]. J.Phys.Chem.C, 2007, 111(8): 11836-11842.

[9]

Nakahira A, Kubo K. Formation Mechanism of TiO2-Derived Titanate Nanotubes Prepared by the Hydrothermal Process[J]. Inorg. Chem., 2010, 49(13): 5845-5852.

[10]

Tian B L, Zhang X T. Strong Visible Absorption and Photoluminescence of Titanic Acid Nanotubes by Hydrothermal Method[J]. J.Phys. Chem.C, 2008, 112(14): 5361-5364.

[11]

Kubo T, Nakahira A. Local Structure of TiO2-Derived Nanotubes Prepared by the Hydrothermal Process[J]. J.Phys.Chem.C, 2008, 112(37): 1658-1662.

[12]

Sun Z Q, Kim J H. Rational Design of 3D Dendritic TiO2 Nanostructures with Favorable Architectures[J]. J.Am.Chem.Soc., 2008, 133(8): 19314-19317.

[13]

Debabrata S, Chandan K Ghosh. Three Dimensional Ag2O/TiO2 Type-II(p-n) Nanoheterojunctions for Superior Photocatalytic Activity[J]. Acs.Appl.Mater.Interfaces, 2013, 5(2): 331-337.

[14]

Liu B, Eray S Aydil. Growth of Oriented Single-Crystalline Rutile TiO Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar cells[J]. J.Am.Chem.Soc., 2009, 131(18): 3985-3990.

[15]

Hirano K, Inoue K, Yatsu T. Photocatalysed Reduction of CO2 in Aqueous TiO2 Suspension Mixed with Copper Powder[J]. J.Photochem. Photobil.A:Chem., 1992, 64(2): 255-258.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/