Synthesis and DNA Adsorption of Poly(2-Vinyl-4,6-Diamino-1,3,5-Triazine) Coated Polystyrene Microspheres

Lei Huang , Xiaotao Wang , Xun Xie , Weihong Xie , Xuefeng Li , Xinghou Gong , Shijun Long , Huiling Guo , Zuifang Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 999 -1006.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 999 -1006. DOI: 10.1007/s11595-018-1925-6
Biomaterials

Synthesis and DNA Adsorption of Poly(2-Vinyl-4,6-Diamino-1,3,5-Triazine) Coated Polystyrene Microspheres

Author information +
History +
PDF

Abstract

To take advantage of the polymer’s special properties, we synthesized PVDAT coated polystyrene (PVDAT@PS) microspheres through semi-continuous precipitation polymerization, and demonstrated the possibility of controlling the size of microspheres by using different sized PS cores. Mechanism of the microsphere synthesis was investigated. Preliminary application studies indicated that the synthesized microspheres adsorbed double-stranded DNAs (dsDNAs) comprising A-T base pairs in pH7.4 phosphate buffered saline, and the adsorption capacity was in a range of 3.28mg to 5.58mg per gram PVDAT@ PS microspheres depending on A-T base pair percentage and chain length of the dsDNAs.

Keywords

2-vinyl-4,6-diamino-1,3,5-triazine / PVDAT@PS / DNA adsorption / semi-continuous precipitation polymerization

Cite this article

Download citation ▾
Lei Huang, Xiaotao Wang, Xun Xie, Weihong Xie, Xuefeng Li, Xinghou Gong, Shijun Long, Huiling Guo, Zuifang Liu. Synthesis and DNA Adsorption of Poly(2-Vinyl-4,6-Diamino-1,3,5-Triazine) Coated Polystyrene Microspheres. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(4): 999-1006 DOI:10.1007/s11595-018-1925-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao ZQ, Liu WG, Liang DC, et al. Design of Poly(vinyldiaminotriazine)-based Nonviral Vectors Via Specific Hydrogen Bonding with Nucleic Acid Base Pairs[J]. Adv. Funct. Mater., 2007, 17: 246-252.

[2]

Ye GX, Gao ZQ, Lin L, et al. Study on Cellular Internalization of Poly(vinyldiaminotriazine)-based Hydrogen Bonding Type Non-viral Transgene Vector[J]. Chinese. Sci. Bull., 2008, 53: 2307-2314.

[3]

Gao YX, Ji XM, Yin YH, et al. Poly(N-isopropylacrylamide), Poly(-methacrylic acid) and Their Copolymers for Oral Colon-specific Drug Delivery[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2009, 4: 571-574.

[4]

Asanuma H, Ban T, Gotoh S, et al. Hydrogen Bonding in Water by Poly(vinyldiaminotriazine) for The Molecular Recognition of Nucleic Acid Bases and Their Derivatives[J]. Macromolecules, 1998, 31: 371-377.

[5]

Asanuma H, Ban T, Hishiya T, et al. Poly(vinyldiaminotriazine) as Highly Selective Hydrogen Bonding Host in Methanol[J]. Polymer Journal, 1996, 28: 1024-1025.

[6]

Asanuma H, Gotoh S, Ban T, et al. Adsorption of Uric Acid Derivatives in Water by Poly(vinyldiaminotriazine) Through Hydrogen Bonding[J]. Chem. Lett., 1996, 25: 681-682.

[7]

Asanuma H, Gotoh S, Ban T, et al. Molecular Recognition of Nucleic Acid Bases in Water by Hydrogen Bonding of Poly(vinyldiaminotriazine)[J]. J. Incl. Phenom. Molec. Rec. Chem., 1997, 27: 259-264.

[8]

Asanuma H, Gotoh S, Ban T, et al. Precise Recognition of Nucleotides and Their Derivatives Through Hydrogen Bonding in Water by Poly(vinyldiaminotriazine)[J]. Supramol. Sci., 1998, 5: 405-410.

[9]

Slinchenko O, Rachkov A, Miyachi H, et al. Imprinted Polymer Layer for Recognizing Double-stranded DNA[J]. Biosens. Bioelectron., 2004, 20: 1091-1097.

[10]

Ogiso M, Minoura N, Shinbo T. DNA Detection System Using Molecularly Imprinted Polymer as The Gel Matrix in Electrophoresis[J]. Biosens. Bioelectron., 2007, 22: 1974-1981.

[11]

Tang L, Yang Y, Bai T, et al. Robust MeO2MA/vinyl-4,6-diamino-1,3,5-triazine Copolymer Hydrogels-mediated Reverse Gene Transfection and Thermo-induced Cell Detachment[J]. Biomaterials, 2011, 32: 1943-1949.

[12]

Liu ZF, Simpson L, Cardosi MF. Poly(2-vinyl-4,6-diamino-1,3,5-triazine) Nanoparticles: Application in Whole Blood Glucose Biosensors[J]. Advance in Analytical Chemistry, 2013, 3: 14-19.

[13]

Barrett KEJ. Dispersion Polymerization in Organic Media[J]. British Polymer Journal, 1973, 5: 259-271.

[14]

Tseng CM, Lu YY, El-Aasser MS, et al. Uniform Polymer Particles by Dispersion Polymerization in Alcohol[J]. J. Polym. Sci., Part A: Polym. Chem., 1986, 24: 2995-3007.

[15]

Krzysztof M, Li W. Atom Transfer Radical Dispersion Polymerization of Styrene in The Presence of PEO-based Macromonomer[J]. Macromolecular Chemistry & Physics, 2011, 212: 1582-1589.

[16]

Kawaguchi H. Functional Polymer Microspheres[J]. Prog. Polym. Sci., 2000, 25: 1171-1210.

[17]

Saadat Y, Hosseinzadeh S, Taromi FA, et al. Generalizing the Polymerization Conditions for The Production of Monodisperse Polymeric Particles Via Dispersion Polymerization[J]. Colloid Polym. Sci., 2013, 291: 937-944.

[18]

Yasuda M, Seki H, Yokoyama H, et al. Simulation of A Particle Formation Stage in The Dispersion Polymerization of Styrene[J]. Macromolecules, 2001, 34: 3261-3270.

[19]

Gao J, Yu J, Wang W, et al. Dispersion Polymerization of Styrene[J]. Chemical Industry & Engineering Progress, 1998, 3: 318-475.

[20]

Paine AJ, Luymes W, Mcnulty J. Dispersion Polymerization of Styrene in Polar Solvents. 6. Influence of Reaction Parameters on Particle Size and Molecular Weight in Poly(N-vinylpyrrolidone)-stabilized Reactions[J]. Macromolecules, 1990, 23: 3104-3109.

[21]

Liu P, Liu WM, Xue QJ. Graft Polymerization of Styrene from Silica Nanoparticles Using a Dispersion Polymerization Method[J]. Designed Monomers and Polymers, 2004, 7: 253-260.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/