Effects of C60 on the Glass Transition Temperature of Carbazole-based Photorefractive Polyphosphazenes

Baili Chen , Shufan Chen , Xuan Luo , Yu Fang , Qingjun Zhang , Chuanqun Huang , Qinghua Deng , Weidong Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 974 -979.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 974 -979. DOI: 10.1007/s11595-018-1921-x
Organic Materials

Effects of C60 on the Glass Transition Temperature of Carbazole-based Photorefractive Polyphosphazenes

Author information +
History +
PDF

Abstract

The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C60-doped were fabricated. The glass transition temperature (T g) of these polymer composite materials was determined using a differential scanning calorimetric (DSC) method. According to the DSC measurement results with different heating rates, the variation of T g and the active energy of glass transition (E g) were analyzed in detail. The analysis results indicate that the transition region shifts to higher temperatures with increasing heating rate, and C60 content (below 1.0wt%) can influence the T g of photorefractive polyphosphazenes. The T g first increases and then decreases with the C60 content (below 1.0wt%). The probable causes of the influence of C60 on T g was proposed.

Keywords

differential scanning calorimetric (DSC) / fullerene C60 / carbazole-based photorefractive polyphosphazenes / glass transition temperature (T g) / active energy of glass transition (E g)

Cite this article

Download citation ▾
Baili Chen, Shufan Chen, Xuan Luo, Yu Fang, Qingjun Zhang, Chuanqun Huang, Qinghua Deng, Weidong Wu. Effects of C60 on the Glass Transition Temperature of Carbazole-based Photorefractive Polyphosphazenes. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(4): 974-979 DOI:10.1007/s11595-018-1921-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ostroverkhova O, Moerner WE. Organic Photorefractives: Mechanisms, Materials, and Applications[J]. Chemical Reviews, 2004, 104(7): 3267-3314.

[2]

Sun LL, Luo X, Chen SF, et al. Optical Properties of Organic Photorefractive Polymers for Phase Retrieval and Filtering[J]. High Power Lasersandsparticle Beams, 2014, 26(9): 577-586.

[3]

Meerholz K, Volodin BL, Kippelen B, et al. A Photorefractive Polymer with High Optical Gain and Diffraction Efficiency Near 100%[J]. Nature, 1994, 371(6497): 497-500.

[4]

Bittner R, Däubler T K, Neher D, et al. Influence of Glass-Transition Temperature and Chromophore Content on the Steady-State Performance of Poly (N-vinylcarbazole)-Based Photorefractive Polymers[J]. Advanced Materials, 1999, 11(2): 123-127.

[5]

Li Z, Shi J, Zheng Y, et al. Photorefractive Properties of Polyphosphazenes Containing Carbazole-based Multifunctional Chromophores[J]. Polymer, 2008, 49(8): 2107-2114.

[6]

Karamanov A, Dzhantov B, Paganelli M, et al. Glass Transition Temperature and Activation Energy of Sintering by Optical Dilatometry[J]. Thermochim Acta, 2013, 553(3): 1-7.

[7]

Simatos D, Blond G, Roudaut G, et al. Influence of Heating and Cooling Rates on the Glass Transition Temperature and the Fragility Parameter of Sorbitol and Fructose as Measured by DSC[J]. Journal of Thermal Analysis and Calorimetry, 1996, 47(5): 1419-1436.

[8]

Elabbar AA, El-Oyoun MA, Abu-Sehly AA, et al. Crystallization Kinetics Study of Pb4.3Se95.7 Chalcogenide Glass Using DSC Technique[J]. Journal of Physics and Chemistry of Solids, 2008, 69(10): 2527-2530.

[9]

Abu-Sehly AA, Alamri SN, Joraid AA. Measurements of DSC Isothermal Crystallization Kinetics in Amorphous Selenium Bulk Samples[J]. Journal of Alloys and Compounds, 2009, 476(1-2): 348-351.

[10]

Sabzevari SM, Alavi-Soltani S, Minaie B. Effect of Thermoplastic Toughening Agent on Glass Transition Temperature and Cure Kinetics of an Epoxy Prepreg[J]. Journal of Thermal Analysis and Calorimetry, 2011, 106(3): 905-911.

[11]

Wang RP, Zha CJ, Rode AV, et al. Luther-Davies B. Thermal Characterization of Ge-As-Se Glasses by Differential Scanning Calorimetry[J]. Journal of Materials Science Materials in Electronics, 2007, 18(1): 419-422.

[12]

Chander R, Thangaraj R. Thermal and Optical Analysis of Te-substituted Sn-Sb-Se Chalcogenide Semiconductors[J]. Applied Physics A, 2010, 99(1): 181-187.

[13]

Lasocka M. The Effect of Scanning Rate on Glass Transition Temperature of Splat-Cooled Te85Ge15[J]. Materials Science and Engineering, 1976, 23(2): 173-177.

[14]

Moharram AH, Abu-Sehly AA, El-Oyoun MA, et al. Pre-crystallization and Crystallization Kinetics of Some Se-Te-Sb Glasses[J]. Physica B, 2002, 324(1): 344-351.

[15]

Mehta N, Kumar A. Applicability of Kissingers Relation in the Determination of Activation Energy of Glass Transition Process[J]. Journal of Optoelectronics and Advanced Materials, 2005, 7(3): 1473-1478.

[16]

Liu P, Yu L, Liu H, et al. Glass Transition Temperature of Starch Studied by a High-speed DSC[J]. Carbohyd Polym, 2009, 77(2): 250-253.

[17]

Abdel-Rahim MA, Abdel-Latief AY, Soltan AS, et al. Crystallization Kinetics of Overlapping Phases in Cu6Ge14Te80 Chalcogenide Glass[J]. Physica B: Condensed Matter, 2002, 322(3): 252-261.

[18]

Chattopadhyay C, Sarkar S, Sangal S, et al. Simulated Isothermal Crystallization Kinetics from Non-Isothermal Experimental Data[J]. Transactions of the Indian Institute of Metals, 2014, 67(6): 945-958.

[19]

Chander R, Thangaraj R. Thermal and Optical Analysis of Te-substituted Sn-Sb-Se Chalcogenide Semiconductors[J]. Applied Physics A, 2010, 99(1): 181-187.

[20]

Joraid AA, Abu-Sehly AA, Alamri SN. A Study on Isothermal Kinetics of Glassy Sb9.1Te20.1Se70.8 Alloy[J]. Journal of Taibah University for Science, 2009, 2: 106-117.

[21]

El-Oyoun MA, Shurit GM, Gaber A, et al. Differential Scanning Calorimetric Study Of Ga5Se95 Glass[J]. Journal of Physics and Chemistry of Solids, 2003, 64(5): 821-826.

[22]

Tiwari RS, Mehta N, Shukla RK, et al. Kinetic Parameters of Glass Transition in Glassy Se1-xSbx Alloys[J]. Turkish Journal of Physics, 2005, 4: 233-241.

[23]

Moharram AH, Abu-sehly A A, El-Oyoun M, et al. Pre-Crystallization and Crystallization Kinetics of Some Se-Te-Sb Glasses[J]. Physica B Condensed Matter., 2002, 324: 344-351.

[24]

Moynihan CT, Easteal AJ, Wilder J, et al. Dependence of the Glass Transition Temperature on Heating and Cooling Rate[J]. The Journal of Physical Chemistry, 1974, 78(26): 2673-2677.

[25]

Woldt E, Jensen DJ. Recrystallization Kinetics in Copper: Comparison between Techniques[J]. Metallurgical and Materials Transactions A., 1995, 26(7): 1717-1724.

[26]

Avrami M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei[J]. Journal of Chemical Physics, 2004, 8(2): 212-224.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/