PDF
Abstract
Cu-Zr-Al-(Y, Ag) amorphous alloy ribbons of Cu50Zr42Al8, Cu46Zr47-xAl7Y x(x=2, 5), Cu43Zr42Al8Ag7, and Cu43Zr42Al8Ag5Y2 were prepared using the single roller melt-spinning method. The glass forming ability and non-isothermal crystallization behavior of the amorphous alloys were investigated by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC) in a continuous heating mode. The experimental results show that the glass forming ability and thermal stability of Cu-Zr-Al amorphous alloys are improved by adding minor amounts of Y and Ag, and the effect of Ag on the glass forming ability is more significant than that of Y. Compared to the Cu50Zr42Al8 alloy, the width of the supercooled liquid region of the Cu46Zr47-xAl7Y x(x = 2 and 5) alloys increased by 19 K and 30 K, respectively. The reduced glass transition temperature (T rg) and the parameter γ of the two alloys enhanced separately. Compared to the Cu50Zr42Al8 alloy, the T rg and γ values of both Cu43Zr42Al8Ag7 and Cu43Zr42Al8Ag5Y2 alloys enhanced noticeably up to 0.619, 0.417, and 0.609, 0.412, respectively. The crystallization activation energies of the amorphous alloys calculated by the Kissinger and Flynn Wall Ozawa equations increased with the addition of minor Y and Ag into the Cu50Zr42Al8 alloy. The addition of Y and Ag significantly improved the thermal stability of the Cu50Zr42Al8 amorphous alloy.
Keywords
amorphous alloy
/
yttrium
/
micro-alloying
/
non-isothermal crystallization
Cite this article
Download citation ▾
Lijie Yue, Yali Liu, Kun Xie.
Glass Forming Ability and Crystallization Kinetics of Cu-Zr-Al-(Y, Ag) Amorphous Alloy.
Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(4): 938-945 DOI:10.1007/s11595-018-1916-7
| [1] |
Barekar NS, Pauly S, Kumar RB, et al. Structure-property Relations in Bulk Metallic Cu-Zr-Al Alloys[J]. Mater. Sci. Eng., 2010, 527(21-22): 5867-5872.
|
| [2] |
Pauly S, Das J, Bednarcik J, et al. Deformation Induced Martensitic Transformation in Cu-Zr-(Al,Ti) Bulk Metallic Glass Composites[J]. Scripta Mater., 2009, 60(6): 431-434.
|
| [3] |
Louzguine DV, Kato H, Inoue A. Investigation of Mechanical Properties and Devitrification of Cu-based Bulk Glass Formers Alloyed with Noble Metals[J]. Sci. Technol. Adv. Mat., 2003, 4(4): 327-331.
|
| [4] |
Coury FG, Botta WJ, Bolfarini C, et al. The Role of Yttrium and Oxygen on the Crystallization Behavior of A Cu-Zr-Al Metallic Glass[J]. J. Non-Cryst Solids, 2014, 406: 79-87.
|
| [5] |
Li DK, Zhang HF, Wang AM. Effect of Sn Addition on the Glass-Forming Ability and Mechanical Properties of Ni-Nb-Zr Bulk Metallic Glasses[J]. Chin. Sci. Bull., 2011, 56(36): 3926-3931.
|
| [6] |
Xu F, Lou HB, Wang XD, et al. Glass Forming Ability and Crystallization of Zr-Cu-Ag-Al-Be Bulk Metallic Glasses[J]. J. Alloys Compd., 2011, 509(37): 9034-9037.
|
| [7] |
Li XL, Bian XF, Guo J. Effects of Microalloying on Glass Forming Ability and Thermodynamic Fragility of Cu-Pr Based Amorphous Alloys[J]. J. Rare Earth, 2007, 25(5): 615-618.
|
| [8] |
Park ES, Chang HJ, Kim DH. Effect of Addition of Be on Glass-Forming Ability, Plasticity and Structural Change in Cu-Zr Bulk Metallic Glasses[J]. Acta Mater., 2008, 56(13): 3120-3131.
|
| [9] |
Inoue A, Zhang W, Zhang T, et al. High-strength Cu-based Bulk Glassy Alloys in Cu-Zr-Ti and Cu-Hf-Ti Ternary Systems[J]. Acta Mater., 2001, 49(14): 2645-2652.
|
| [10] |
Inoue A, Zhang T, Kurosaka K. High Strength Cu-based Bulk Glassy Alloys in Cu-Zr-Ti-Be System[J]. Mater. Trans., 2002, 42(8): 1802-1805.
|
| [11] |
Pathak D, Bedi RK, Kaur D. 200 MeV Ag+ Ion Beam Induced Modification in AgInSe2 Films Deposited by Hot Wall Vacuum Evaporation Method[J]. Chalcogenide Lett., 2011, 8(1): 213-222.
|
| [12] |
Pathak D, Wagner T. Characterization of Mechanically Synthesized AgInSe2 Nanostructures[J]. Can. J. Phys., 2014, 92(4): 789-796.
|
| [13] |
Peng WJ, Zhang Y. Micro-alloying of Yttrium in Zr-based Bulk Metallic Glasses[J]. Prog. Nat. Sci-Mater., 2010, 21(1): 46-52.
|
| [14] |
Zhang L, Luo DC, Kou SZ, et al. Influence of Addition of Gd on Glass Forming Ability, Thermal Stability and Compression Performance of Cu-based Bulk Metallic Glass[J]. Rare Metal Mat. Eng., 2012, 41(11): 1903-1906.
|
| [15] |
Chen QJ, Zhang DL, Shen J, et al. Effect of Yttrium on the GlassForming Ability of Fe-Cr-Mo-C-B Bulk Amorphous Alloys[J]. J. Alloys Compd., 2007, 427(1): 190-193.
|
| [16] |
Xu X, Chen LY, Zhang GQ, et al. Formation of Bulk Metallic Glasses in Cu45Zr48-xAl7REx (RE=La, Ce, Nd, Gd and 0=x=5at%)[J]. Intermetallics, 2007, 15(8): 1066-1070.
|
| [17] |
Lu ZP, Liu CT. A New Glass-forming Ability Criterion for Bulk Metallic Glasses[J]. Acta Mater., 2002, 50(13): 3501-3512.
|
| [18] |
Inoue A, Zhang T, Takenchi A. Ferrous and Nonferrous Bulk Amorphous Alloys[J]. Mater. Sci. Forum, 1998, 269: 855-864.
|
| [19] |
Fu HM, Zhang HF, Wang H, et al. Cu-based Bulk Amorphous Alloy with Larger Glass-Forming Ability and Supercooled Liquid Region[J]. J. Alloys Compd., 2008, 458(1-2): 390-393.
|
| [20] |
Niessen FR. Cohesion in Metals[M]. 1988
|
| [21] |
Song KK, Pauly S, Sun BA, et al. Formation of Cu-Zr-Al-Er Bulk Metallic Glass Composites with Enhanced Deformability[J]. Intermetallics, 2012, 30(11): 132-138.
|
| [22] |
Qin CL, Zhang W, Asami K, et al. A Novel Cu-based BMG Composite with High Corrosion Resistance and Excellent Mechanical Properties[J]. Acta Mater., 2006, 54(14): 3713-3719.
|
| [23] |
Poon SJ, Shiflet GJ, Guo FQ, et al. Glass Formability of Ferrous-and Aluminum-based Structural Metallic Alloys[J]. J. Non-Cryst Solids, 2003, 317(1): 1-9.
|
| [24] |
Sun YJ, Wei XS, Huang YJ, et al. Effect of Gd Addition on the Glass Forming Ability and Mechanical Properties in a Zr-based Bulk Amorphous Alloy[J]. Acta Mater., 2009, 45(2): 243-248.
|
| [25] |
Zhang W, Qin CL, Zhang XG. Effects of Additional Noble Elements on the Thermal Stability and Mechanical Properties of Cu-Zr-Al Bulk Glassy Alloys[J]. Mater. Sci. Eng., 2007, 449-451: 631-635.
|
| [26] |
Xu HW, Du YL, Deng Y. Effects of Y Addition on Structural and Mechanical Properties of CuZrAl Bulk Metallic Glass[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(5): 1123-1126.
|
| [27] |
Yue LJ, Xie K, Chen YB, et al. Influence of Micro-composition on the Performance of Cu-Zr-Al Bulk Amorphous Alloy[J]. J. Funct. Mater., 2010, 41: 207-209.
|
| [28] |
Ahmadi S, Shahverdi HR, Saremi SS, et al. Effects of Nb Alloying on Nano-crystallization Kinetics of Fe55-xCr18Mo7B16C4Nbx(x=0, 3) Bulk Amorphous Alloys[J]. J. Mater. Sci. Technol., 2011, 27(8): 735-740.
|
| [29] |
Huang L J, Lu L, Liang GY, et al. Crystallization Kinetics of Mg65Cu25Nd10 Amorphous Alloy[J]. J. Non-Cryst Solids, 2008, 354(s10-11): 1048-1053.
|
| [30] |
Mika T, Karolus M, Haneczok G, et al. Influence of Gd and Fe on Crystallization of Al87Y5Ni8 Amorphous Alloy[J]. J. Non-Cryst Solids, 2008, 354(27): 3099-3106.
|
| [31] |
Kissinger HE. Variation of Peak Temperature with Heating Rate in Different Thermal Analysis[J]. J. Research Natl. Bur. Standards, 1956, 57(4): 217-221.
|
| [32] |
Kissinger HE. Reaction Kinetics in Differential Thermal Analysis[J]. Anal. Chem., 1957, 29(11): 1702-1706.
|
| [33] |
Wang HR, Gao YL, Ye YF, et al. Crystallization Kinetics of An Amorphous Zr-Cu-Ni Alloy: Calculation of the Activation Energy[J]. J. Alloys Compd., 2003, 353(1-2): 200-206.
|
| [34] |
Zhang BQ, Cao GH, Liu BZ, et al. Crystallization Behavior of Zr-CuAlSi Bulk Metallic Glass in Continuous Heating[J]. Rare Metal Mat. Eng., 2011, 40(5): 824-828.
|
| [35] |
Flynn JH. Isoconversional Method for Determination of Energy of Activation at Constant Heating Rate Corrections for the Doyle Approximation[J]. J. Therm. Anal., 1983, 27(l): 95-102.
|
| [36] |
Kong LH, Gao YL, Song TT, et al. Non-isothermal Crystallization Kinetics of FeZrB Amorphous Alloy[J]. Thermochim. Acta, 2011, 522(1-2): 166-172.
|