Statistical Characteristics of Microhardness of Hardened Cement Paste

Yudong Dang , Xianming Shi , Jueshi Qian , Yan Jiang , Xincheng Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 924 -931.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 924 -931. DOI: 10.1007/s11595-018-1914-9
Cementitious Materials

Statistical Characteristics of Microhardness of Hardened Cement Paste

Author information +
History +
PDF

Abstract

Due to the intrinsic nature of a heterogeneous and anisotropic microstructure of cement based materials and the small indentation size, the measured microhardness values are subject to considerable variability. This work presents an in-depth assessment of microhardness of hardened cement pastes (HCPs) from a statistical perspective. Hundreds of microhardness measurements were conducted on an HCP sample using a Vickers Microhardness Tester. The results showed that the microhardness measured from the HCP sample significantly scattered with a large standard deviation, varying from tens to hundreds. The data-set of microhardness values was not normally distributed but fit best with a three-parameter lognormal model. By using a statistical software, the probability density function of the microhardness distribution can be readily obtained. The arithmetic mean and its 95% confidence intervals of the measured microhardness values can be used to best represent the microhardness characteristics of HCPs.

Keywords

hardened cement pastes / microhardness / distribution / statistics analysis

Cite this article

Download citation ▾
Yudong Dang, Xianming Shi, Jueshi Qian, Yan Jiang, Xincheng Li. Statistical Characteristics of Microhardness of Hardened Cement Paste. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(4): 924-931 DOI:10.1007/s11595-018-1914-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fröhlich F, Grau P, Grellmann W. Performance and Analysis of Recording Microhardness Tests[J]. Phys. Status. Solidi A, 1977, 42(1): 79-89.

[2]

Pelleg J. Mechanical Properties of Materials[M]. 2014 London: Springer. 43-46.

[3]

Igarashi S, Bentur A, Mindess S. Microhardness Testing of Cementitious Materials[J]. Adv. Cem. Based. Mater., 1996, 4: 48-57.

[4]

Igarashi S, Bentur A, Mindess S. Characterization of the Microstructure and Strength of Cement Paste by Microhardness Testing[J]. Adv. Cem. Res., 1996, 8(30): 87-92.

[5]

Cross WM, Sabnis KH, Kjerengtroen L, et al. Microhardness Testing of Fiber-reinforced Cement Paste[J]. ACI Mater. J., 2000, 97(2): 162-167.

[6]

Asbridge A, Page C, Page M. Effects of Metakaolin, Water/Binder Ratio and Interfacial Transition Zones on the Microhardness of Cement Mortars[J]. Cem. Concr. Res., 2002, 32(9): 1365-1369.

[7]

Bonakdar A, Mobasher B, Chawla N. Diffusivity and Micro-hardness of Blended Cement Materials Exposed to External Sulfate Attack[J]. Cem. Concr. Compos., 2012, 34(1): 76-85.

[8]

Gao J, Qian C, Liu H, et al. ITZ Microstructure of Concrete Containing GGBS[J]. Cem. Concr. Res., 2005, 35(7): 1299-1304.

[9]

Gao J, Qian C, Wang B. Experimental Study on Properties of Polymer-modified Cement Mortars with Silica Fume[J]. Cem. Concr. Res., 2002, 32(1): 41-45.

[10]

Hossain A, Khandaker M. High Strength Blended Cement Concrete Incorporating Volcanic Ash: Performance at High Temperatures[J]. Cem. Concr. Compos., 2006, 28(6): 535-545.

[11]

Hossain KMA, Lachemi M. Strength, Durability and Micro-structural Aspects of High Performance Volcanic Ash Concrete[J]. Cem. Concr. Res., 2007, 37(5): 759-766.

[12]

Hu S, Wang F, Ding Q. Interface Structure between Lightweight Aggregate and Cement Paste[J]. J. Chin. Ceram. Soc., 2005, 33(6): 713-717.

[13]

Kong L, Du Y, Gao L. Effect of Coarse Aggregate on the Interfacial Transition Zone of Concrete based on Grey Correlation[J]. Mag. Concr. Res., 2014, 66(7): 339-347.

[14]

Xu Y, Wong Y, Poon C, et al. Impact of High Temperature on PFA Concrete[J]. Cem. Concr. Res., 2001, 31(7): 1065-1073.

[15]

Xuan D, Shui Z, Wu S. Influence of Silica Fume on the Interfacial Bond between Aggregate and Matrix in Near-surface Layer of Concrete[J]. Constr. Build. Mater., 2009, 23(7): 2631-2635.

[16]

Zhu W, Bartos J. Application of Depth-sensing Microindentation Testing to Study of Interfacial Transition Zone in Reinforced Concrete[J]. Cem. Concr. Res., 2000, 30(8): 1299-1304.

[17]

ASTM E384: Standard Test Method for Knoop and Vickers Hardness of Materials[S]. West Conshohocken: ASTM Int., 2016

[18]

Bernard O, Ulm FJ, Lemarchand E. A Multiscale Micromechanics-hydration Model for the Early-age Elastic Properties of Cement-based Materials[J]. Cem. Concr. Res., 2003, 33(9): 1293-1309.

[19]

Jiang Y, Dang Y, Qian J, et al. Influence of Surface Status of Hardened Cement Paste on Its Microhardness and Statistical Distribution[J]. J. Chin. Ceram. Soc., 2017, 45(2): 212-219.

[20]

Montgomery DC, Runger GC. Applied Statistics and Probability for Engineers(5th Edition)[M]. 2013 Hoboken: John Wiley & Sons, Inc. 1-164.

[21]

Steel R, Torrie J. Principles and Procedures of Statistics. A Biometrical Approach[M]. 1997 New York: McGraw-Hill Book Company. 36-45.

[22]

Croarkin C, Tobias P. NIST/SEMATECH E-handbook of Statistical Methods[EB/OL]. 2006

[23]

Lin F, Meyer C. Hydration Kinetics Modeling of Portland Cement Considering the Effects of Curing Temperature and Applied Pressure[J]. Cem. Concr. Res., 2009, 39(4): 255-265.

[24]

Velez K, Maximilien S, Damidot D, et al. Determination by Nanoindentation of Elastic Modulus and Hardness of Pure Constituents of Portland Cement Clinker[J]. Cem. Concr. Res., 2001, 31(4): 555-561.

[25]

Constantinides G, Ulm FJ. The Effect of Two Types of CSH on the Elasticity of Cement-based Materials: Results from Nanoindentation and Micromechanical Modeling[J]. Cem. Concr. Res., 2004, 34(1): 67-80.

[26]

Zhu W, Hughes JJ, Bicanic N, et al. Nanoindentation Mapping of Mechanical Properties of Cement Paste and Natural Rocks[J]. Mater. Charact., 2007, 58(11): 1189-1198.

[27]

Bauer J, Loguercio AD, Reis A, et al. Microhardness of Ni-Cr Alloys under Different Casting Conditions[J]. Braz. Oral. Res., 2006, 20(1): 40-46.

[28]

Basu B, Tiwari D, Kundu D, et al. Is Weibull Distribution the Most Appropriate Statistical Strength Distribution for Brittle Materials[J]. Ceram. Int., 2009, 35(1): 237-246.

[29]

Lin C, Berndt C. Statistical Analysis of Microhardness Variations in Thermal Spray Coatings[J]. J. Mater. Sci., 1995, 30(1): 111-117.

[30]

Factor M, Roman I. Vickers Microindentation of WC-12% Co Thermal Spray Coating: Part 1: Statistical Analysis of Microhardness Data[J]. Surf. Coat. Tech., 2000, 132(2): 181-193.

[31]

Yanchev I, Trifonova E, Karakotsou C, et al. Analysis of Microhardness Data in TlxIn1-xSe[J]. J. Mater. Sci., 1995, 30(22): 5576-5580.

[32]

Yurkov A, Jhuravleva N, Lukin E. Kinetic Microhardness Measurements of Sialon-based Ceramics[J]. J. Mater. Sci., 1994, 29(24): 6551-6.

[33]

Schneider JM, Bigerelle M, Iost A. Statistical Analysis of the Vickers Hardness[J]. Mater. Sci. Eng. A, 1999, 262(1): 256-263.

[34]

Balakrishnan N, Chen WW. Handbook of Tables for Order Statistics from Lognormal Distributions with Applications[M]. 1999 London: Springer. 25-50.

[35]

Weisstein EW. Log Normal Distribution [EB/OL]. 2006

[36]

Olsson U. Confidence Intervals for the Mean of a Log-normal Distribution[J]. Stat. Educ., 2005, 13(1): 8-15.

[37]

Zhou X, Gao S. Confidence Intervals for the Log-normal Mean[J]. Stat. Med., 1997, 16(7): 783-790.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/