PDF
Abstract
The crystal structure, band structure, density of states, Mulliken charge, bond population and optical properties for LiBi1-xM xO3 (M=V, Nb, and Ta) were investigated using hybrid density functional theory. It was found that LiBiO3 doped with V, Nb, and Ta presented distinctly stronger covalent interactions in M-O (M=V, Nb, and Ta) than Bi-O, thus resulting in mild distortion of the structure and facilitating the separation of photogenerated carriers. Furthermore, the hybridizations of Bi-6s, M-d (M=V, Nb, and Ta) and O-2p widened the valence and conduction bands, which promoted transmission of photogenerated carriers in the band edge and thus caused better photocatalytic performance.
Keywords
V, Nb, Ta doping
/
electronic structure
/
photocatalysis
/
hybrid density functional
Cite this article
Download citation ▾
Jia Kang, Gang Bi.
Electronic Structure and Optical Properties of LiBiO3 Doped with V, Nb, and Ta.
Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(4): 863-870 DOI:10.1007/s11595-018-1905-x
| [1] |
Tong H, Ouyang SX, Bi YP, et al. Nano-photocatalytic Materials: Possibilities and Challenges[J]. Advanced Materials, 2012, 24(2): 229-251.
|
| [2] |
Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238: 37-38.
|
| [3] |
Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chemical Reviews, 1995, 95(3): 735-758.
|
| [4] |
Geoffrey BS, Thomas EM. Visible Light Photolysis of Hydrogen Iodide Using Sensitized Layered Metal Oxide Semiconductors: The Role of Surface Chemical Modification in Controlling Back Electron Transfer Reactions[J]. Journal of Physical Chemistry B, 1997, 101(14): 2508-2513.
|
| [5] |
Kim YII, Salim S, Huq MJ, et al. Visible-light Photolysis of Hydrogen Iodide using Sensitized Layered Semiconductor Particles[J]. Journal of the American Chemical Society, 1991, 113(25): 9561-9563.
|
| [6] |
Yoshimura J, Ebina Y, Kondo J, et al. Visible-light Induced Photocatalytic Behavior of a Layered Perovskite Type Niobate,RbPb2Nb3O10[J]. Journal Physical Chemistry, 1993, 97(9): 1970-1973.
|
| [7] |
Kudo A, Mikami I. New In2O3(ZnO)(m) photocatalysts with laminal structure for visible light-induced H-2 or O-2 evolution from aqueous solutions containing sacrificial reagents[J]. Chemistry Letters, 1998, 27(10): 1027-1028.
|
| [8] |
Inturi SNR, Boningari T, Suidan M, et al. Visible-light-induced Photodegradation of Gas Phase Acetonitrile Using Aerosol-made Transition Metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) Doped TiO2[J]. Applied Catalysis B-Environmental, 2014, 144: 333-342.
|
| [9] |
Weng HM, Yang XP, Dong JM, et al. Electronic Structure and Optical Properties of the Co-doped Anatase TiO2 Studied from First Principles[J]. Physical Review B, 2004, 69(12): 125219
|
| [10] |
Du XS, Li QX, Su HB, et al. Electronic and Magnetic Properties of V-doped Anatase TiO2 from First Principles[J]. Physical Review B, 2006, 74(23): 233201
|
| [11] |
Zhang HM, Yu XH, Mcleod JA, et al. First-principles study of Cu-doping and Oxygen Vacancy Effects on TiO2 for Water Splitting[J]. Chemical Physics Letters, 2014, 612: 106-110.
|
| [12] |
Li Y, Yue Y, Que ZQ, et al. Preparation and Visible-light Photocatalytic Property of Nanostructured Fe-doped TiO2 from Titanium Containing Electric Furnace Molten Slag[J]. International Journal of Minerals Metallurgy and Materials, 2013, 20(10): 1012-1020.
|
| [13] |
Ma X, Xue LH, Yin SM, et al. Preparation of V-doped TiO2 Photocatalysts by the Solution Combustion Method and Their Visible Light Photocatalysis Activities[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2014, 29(5): 863-868.
|
| [14] |
Orlin A, Konstantin L, Doriana DM. Optical and Electrical Properties of ZnO Thin Films Doped with Al, V and Nb[J]. Phys. Status Solidi, 2013, 10(4): 709-712.
|
| [15] |
Based on the reference Air Mass 1.5 Spectra (http://rredc.nrel.gov/solar/spectra/am1.5) and 100% Quantum Efficiency[OL]
|
| [16] |
Kikugawa N, Yang LQ, Matsumoto T, et al. Photoinduced Degradation of Organic Dye over LiBiO3 under Illumination of White Fluorescent Light[J]. Journal of Materials Research, 2010, 25(1): 177-181.
|
| [17] |
Kumada N, Takahashi N, Kinomura N, et al. Preparation and Crystal Structure of a New Lithium Bismuth Oxide: LiBiO3[J]. Journal of Solid State Chemistry, 1996, 126(1): 121-126.
|
| [18] |
Walsh A, Yan Y, Huda MN, et al. Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals[J]. Chemistry of Materials, 2009, 21(3): 547-551.
|
| [19] |
Breckenridge RG, Hosler WR. Electrical Properties of Titanium Dioxide Semiconductor[J]. Physical Review, 1953, 91(4): 793-802.
|
| [20] |
Pan J W, Li C, Zhao YF, et al. Electronic Properties of TiO2 Doped with Sc, Y, La, Zr, Hf, V, Nb and Ta[J]. Chemical Physical Letters, 2015, 628: 43-48.
|
| [21] |
Zhang S, Xia R, Shrout TR. Modified (K0.5Na0.5)NbO3 Based Lead-free Piezoelectrics with Broad Temperature Usage Range[J]. Applied Physics Letter, 2007, 91(13): 132913
|
| [22] |
Birol H, Damjanovic D, Setter N. Preparation and Characterization of (K0.5Na0.5)NbO3 Ceramics[J]. Journal of the European Ceramic Society, 2006, 26(6): 861-866.
|
| [23] |
Yongsiri P, Pengpat K. Materials Characterization of Potassium Sodium Niobate Based Tellurite Glass-ceramics[J]. Integrated Ferroelectrics, 2013, 141(1): 154-166.
|
| [24] |
Sang SJ, Yuan ZY, Zheng LM, et al. Optical Transmittance and Raman Scattering Studies of (K, Na)(Nb, Ta)O-3 Single Crystal[J]. Optical Material, 2015, 45: 104-108.
|
| [25] |
Heyd J, Scuseria GE, Ernzerhof M. Hybrid Functionals Based on a Screened Coulomb Potential[J]. Journal of Chemical Physics, 2003, 118(18): 8207-8215.
|
| [26] |
Takei T, Haramoto R, Dong Q, et al. Photocatalytic Activities of Various Pentavalent Bismuthates under Visible Light Irradiation[J]. Journal of Solid State Chemistry, 2011, 184(8): 2017-2022.
|
| [27] |
Paier J, Marsman M, Hummer K, et al. Screened Hybrid Density Functionals Applied to Solids[J]. Journal Chemical Physics, 2006, 124(15): 154709
|
| [28] |
Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method[J]. Physical Review B, 1999, 59(3): 1758-1775.
|
| [29] |
Kresse G, Furthmüller J. Efficient Iterative Schemes for ab Initio total-energy Calculations Using a Plane-wave Basis Set[J]. Physical Review B, 1996, 54(16): 11169-11186.
|
| [30] |
Kresse G, Furthmüller J. Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set[J]. Computation Material Science, 1996, 6(1): 15-50.
|
| [31] |
Murnaghan FD. The Compressibility of Media under Extreme Pressures[J]. Proceedings of the National Academy of Sciences of the United States of America, 1944, 30(9): 244-247.
|
| [32] |
Heyd J, Scuseria GE, Ernzerhof M. Erratum: “Hybrid Functionals Based on a Screened Coulomb Potential”[J. Chem. Phys.118, 8207 (2003)][J]. Journal Chemical Physics, 2006, 124(21): 219906
|
| [33] |
Sato J, Kobayashi H, Inoue Y. Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated d(10) Configuration. II. Roles of Geometric and Electronic Structures[J]. Journal of Physical Chemistry B, 2003, 107(31): 7970-7975.
|
| [34] |
Qiao LP, Chai CC, Yang YT, et al. First-principles Theoretical Study on Band of Strained Wurtzite Nb-doped ZnO[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(3): 467-472.
|
| [35] |
Liu JJ, Chen SF, Liu QZ, et al. Correlation of Crystal Structures and Electronic Structures with Visible Light Photocatalytic Properties of NaBiO3[J]. Chemical Physics Letters, 2013, 572: 101-105.
|
| [36] |
Phillips J C. Ionicity of the Chemical Bond in Crystals[J]. Reviews of Modern Physics, 1970, 42(3): 317
|
| [37] |
Segall MD, Shah R, Pickard CJ, et al. Population Analysis of Planewave Electronic Structure Calculations of Bulk Materials[J]. Physical Review B, 1996, 54(23): 16317-16320.
|
| [38] |
Li C, Li JC, Jiang Q. Revisiting the Phillips Ionicity of Conductors and the Quantitative Determination of the Hardness of Carbides and Nitrides of Transition Metals Using the LDA+U Technique[J]. Solid State Communications, 2010, 150(37-38): 1818-1821.
|