Response of Silicon Nitride Ceramics under High-enthalpy Plasma Flows

Jiasuo Guan , Laifei Cheng , Yaohui Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 828 -835.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 828 -835. DOI: 10.1007/s11595-018-1900-2
Advanced Materials

Response of Silicon Nitride Ceramics under High-enthalpy Plasma Flows

Author information +
History +
PDF

Abstract

Silicon nitride ceramics were prepared by means of a hot-press sintering method. The ablation behavior was studied by plasma wind tunnel tests. The data suggested that, under low heat flux and stagnation pressure conditions, the ablation process was controlled by the atomic oxidation of Si3N4, leading to the elimination of Si3N4. By contrast, the erosion was mainly produced by the decomposition of Si3N4 under high heat flux and stagnation pressure conditions. Under these conditions, a fraction of Si phase, formed upon decomposition of Si3N4, was volatilized. The remained Si had melted due to high temperatures and scoured away from stagnation point area, generating mushroom-shaped samples.

Keywords

silicon nitride / plasma wind tunnel / ablation

Cite this article

Download citation ▾
Jiasuo Guan, Laifei Cheng, Yaohui Wang. Response of Silicon Nitride Ceramics under High-enthalpy Plasma Flows. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(4): 828-835 DOI:10.1007/s11595-018-1900-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Biamino S, Liedtke V, Badini C, et al. Multilayer SiC for Thermal Protection System of Space Vehicles: Manufacturing and Testing under Simulated Re-entry Conditions[J]. Journal of the European Ceramic Society, 2008, 28(14): 2791-2800.

[2]

Evans AG, Zok FW, McMeeking RM. Fatigue of Ceramic Matrix Composites[J]. Acta. Mater., 1995, 43(3): 859-875.

[3]

Alfano D, Scatteia L, Cantoni S, et al. Emissivity and Catalycity Measurements on SiC-coated Carbon Fibre Reinforced Silicon Carbide Composite[J]. Journal of the European Ceramic Society, 2009, 29(10): 2045-2051.

[4]

Pichon T, Barreteau R, Soyris P, et al. CMC Thermal Protection System for Future Reusable Launch Vehicles: Generic Shingle Technological Maturation and Tests[J]. Acta Astronautica, 2009, 65(1): 165-176.

[5]

Sakraker I, Asma CO. Experimental Investigation of Passive/Active Oxidation Behavior of SiC Based Ceramic Thermal Protection Materials Exposed to High Enthalpy Plasma[J]. Journal of the European Ceramic Society, 2013, 33(2): 351-359.

[6]

Glass DE. Ceramics Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles[J]. AIAA, 2008–2682

[7]

Barta J, Manela M. Si3N4 and Si2N2O for High Performance Radomes[J]. Mater. Sci. Eng., 1985, 71: 265-272.

[8]

Kim PC, Lee DG, Seo LS, et al. Low-observable Radomes Composed of Composite Sandwich Constructions and Frequency Selective Surfaces[J]. Compos. Sci. Tech., 2008, 68(9): 2163-2170.

[9]

Lanford WA, Rand MJ. The Hydrogen Content of Plasma-deposited Silicon Nitride[J]. J. Appl. Phys., 1978, 49(4): 2473-2477.

[10]

Riley FL. Silicon Nitride and Related Materials[J]. J. Am. Ceram. Soc., 2000, 83(2): 245-265.

[11]

Westwood ME, Webster JD, Day RJ, et al. Oxidation Protection for Carbon Fibre Composites[J]. J. Mater. Sci., 1996, 31(6): 1389-1397.

[12]

Ren SY, Ching W. Electronic Structures of β-and a-Silicon Nitride[J]. Phys. Rev. B., 1981, 23(10): 5454

[13]

Yang JF, Ohji T, Kanzaki S, et al. Microstructure and Mechanical Properties of Silicon Nitride Ceramics with Controlled Porosity[J]. J. Am. Ceram. Soc., 2002, 85(6): 1512-1516.

[14]

Opeka MM, Talmy I Zaykoski. Oxidation-based Materials Selection for 2000? + Hypersonic Aerosurfaces: Theoretical Considerations and Historical Experience[J]. J. Mater. Sci., 2004, 39(19): 5887-5904.

[15]

Tanaka I, Pezzotti G, Okamoto T, et al. Hot Isostatic Press Sintering and Properties of Silicon Nitride without Additives[J]. J. Am. Ceram. Soc., 1989, 72(9): 1656-1660.

[16]

Ziatdinov MK, Shatokhin IM. Using Ferrosilicon Nitride of Nitro-fesil Grade in Gate and Spout Components[J]. Refract. Ind. Ceram., 2008, 49(5): 383-387.

[17]

Ziatdinov MK, Shatokhin IM. Self-propagating High-temperature Synthesis of Ferrosilicon Nitride[J]. Steel. Trans., 2008, 38(1): 39-44.

[18]

Wang YH, Cheng LF, Guan JS, et al. Effect of Dilution and Additive on Direct Nitridation of Ferrosilicon[J]. Journal of the European Ceramic Society, 2014, 34(5): 1115-1122.

[19]

SINGHAL SC. Thermodynamics and Kinetics of Oxidation of Hotpressed Silicon Nitride[J]. Journal of Materials Science, 1976, 11(3): 500-509.

[20]

Ogbuji LUJT, Opila EJ. A Comparison of the Oxidation Kinetics of SiC and Si3N4[J]. J. Electrochem. Soc., 1995, 142(3): 925-930.

[21]

Fox DS. Oxidation Behavior of Chemically-Vapor-Deposited Silicon Carbide and Silicon Nitride from 1200 to 1600?[J]. J. Am. Ceram. Soc., 1998, 81(4): 945-950.

[22]

Kiehle AJ, Heung LK, Gielisse PJ, et al. Oxidation Behavior of Hot-Pressed Si3N4[J]. J. Am. Ceram. Soc., 1975, 58(1-2): 17-20.

[23]

Tripp WC, Graham HC. Oxidation of Si3N4 in the Range 1300 to 1500 °C[J]. J. Am. Ceram. Soc., 1976, 59(9-10): 399-403.

[24]

Luthra KL. A Mixed Interface Reaction/Diffusion Control Model for Oxidation of Si3N4[J]. Journal of the Electrochemical Society, 1991, 138(10): 3001-3007.

[25]

Hald H. Operational Limits for Reusable Space Transportation Systems due to Physical Boundaries of C/SiC Materials[J]. Aerosp. Sci. Technol., 2003, 7(7): 551-559.

[26]

Herdrich G, Fertig M, Lohle S, et al. Oxidation Behavior of Silicon Carbide-based Materials by Using New Probe Techniques[J]. J. Spacecraft. Rock., 2005, 42(5): 817-824.

[27]

Luo L, Wang YG, Duan LY, et al. Ablation Behavior of C/SiC-HfC Composites in the Plasma Wind Tunnel[J]. Journal of the European Ceramic Society, 2016, 36(15): 3801-3807.

[28]

Luo L, Wang YG, Liu LP, et al. Ablation Behavior of C/SiC Composites in Plasma Wind Tunnel[J]. Carbon, 2016, 103: 73-83.

[29]

Han JC, Hu P, Zhang XH, et al. Oxidation-resistant ZrB2-SiC Composites at 2200?[J]. Compos. Sci. Tech., 2008, 68(3-4): 799-806.

[30]

Geiger G, Nassel DR. Visual Orientation Behaviour of Flies after Selective Laser Beam Ablation of Interneurons[J]. Nature, 1981, 293: 398-399.

[31]

Liu QM, Zhang LT, Jiang FR, et al. Laser Ablation Behaviors of SiCZrC Coated Carbon/Carbon Composite[J]. Surf. Coat. Tech., 2011, 205(17-18): 4299-4303.

[32]

Monteverde F, Savino R, Fumo MDS, et al. Plasma Wind Tunnel Testing of Ultra-high Temperature ZrB2-SiC Composites under Hypersonic Re-entry Conditions[J]. Journal of the European Ceramic Society, 2010, 30(11): 2313-2321.

[33]

Monteverde F, Savino R, Fumo MDS. Dynamic Oxidation of Ultra-high Temperature ZrB2-SiC under High Enthalpy Supersonic Flows[J]. Corr. Sci., 2011, 53(3): 922-929.

[34]

Nawaz A, Santos JA. Assessing Calorimeter Evaluation Methods in Convective and Radiative Heat Flux Environment[J]. AIAA, 2010–4905

[35]

Salinas IT, Carballo JE, Driver DM, et al. Comparison of Heat Transfer Measurement Devices in Arc Jet Flows with Shear[J]. AIAA, 2010–5053

[36]

Panerai F, Helber B, Chazot O, et al. Surface Tmperature Jump Beyond Active Oxidation of Carbon/Silicon Carbide Composites in Extreme Aerothermal Conditions[J]. Carbon, 2014, 71: 102-19.

[37]

Mazdiyasni KS, West R, David LD. Characterization Organosilicon-infiltrated Porous Reaction-Sintered Si3N4[J]. J. Am. Ceram. Soc., 1978, 61(11-12): 504-508.

[38]

Greskovich C, Prochazka S. Stability of Si3N4 and Liquid Phase (s) During Sintering[J]. J. Am. Ceram. Soc., 1981, 64(7): 96-97.

[39]

Ziegler G, Heinrich J, Wötting G. Relationships Between Processing, Microstructure and Properties of Dense and Reaction-bonded Silicon Nitride[J]. J. Mater. Sci., 1987, 22(9): 3041-3086.

[40]

Moulson AJ. Reaction-bonded Silicon Nitride: Its Formation and Properties[J]. J. Mater. Sci., 1979, 14(5): 1017-1051.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/