Structures and Electrochemical Performances of As-spun RE-Mg-Ni-Mn-based Alloys Applied to Ni-MH Battery

Yanghuan Zhang , Hongwei Shang , Yaqin Li , Zeming Yuan , Feng Hu , Yan Qi , Dongliang Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 812 -822.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 812 -822. DOI: 10.1007/s11595-018-1898-5
Advanced Materials

Structures and Electrochemical Performances of As-spun RE-Mg-Ni-Mn-based Alloys Applied to Ni-MH Battery

Author information +
History +
PDF

Abstract

The La-Mg-Ni-Mn-based AB2-type La1-xCe xMgNi3.5Mn0.5 (x = 0, 0.1, 0.2, 0.3, and 0.4) alloys were fabricated by melt spinning technology. The effects of Ce content on the structures and electrochemical hydrogen storage performances of the alloys were studied systematically. The XRD and SEM analyses proved that the experimental alloys consist of a major phase LaMgNi4 and a secondary phase LaNi5. The variation of Ce content causes an obvious change in the phase abundance of the alloys without changing the phase composition. Namely, with the increase of Ce content, the LaMgNi4 phase augments and the LaNi5 phase declines. The lattice constants and cell volumes of the alloys clearly shrink with increasing Ce content. Moreover, the Ce substitution for La results in the grains of the alloys clearly refined. The electrochemical tests showed that the substitution of Ce for La obviously improves the cycle stability of the as-spun alloys. The analyses on the capacity degradation mechanism demonstrate that the improvement can be attributed to the ameliorated anti-corrosion and anti-oxidation ability originating from substituting partial La with Ce. The as-spun alloys exhibit excellent activation capability, reaching the maximum discharge capacities just at the first cycling without any activation treatment. The substitution of Ce for La evidently improves the discharge potential characteristics of the as-spun alloys. The discharge capacity of the alloys first increases and then decreases with growing Ce content. Furthermore, a similar trend also exists in the electrochemical kinetics of the alloys, including the high rate discharge ability (HRD), hydrogen diffusion coefficient (D), limiting current density (I L) and charge transfer rate.

Keywords

AB2-type alloy / Ce substitution for La / melt spinning / electrochemical performance / capacity degradation

Cite this article

Download citation ▾
Yanghuan Zhang, Hongwei Shang, Yaqin Li, Zeming Yuan, Feng Hu, Yan Qi, Dongliang Zhao. Structures and Electrochemical Performances of As-spun RE-Mg-Ni-Mn-based Alloys Applied to Ni-MH Battery. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(4): 812-822 DOI:10.1007/s11595-018-1898-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mori D, Hirose K. Recent Challenges of Hydrogen Storage Technologies for Fuel Cell Vehicles[J]. Int. J. Hydrogen Energy, 2009, 34(10): 4569-4574.

[2]

Lan R, John TS. Irvine, Tao SW. Ammonia and Related Chemicals as Potential Indirect Hydrogen Storage Materials[J]. Int. J. Hydrogen Energy, 2012, 37(2): 1482-1494.

[3]

Li RF, Xu PZ, Zhao YM, et al. The Microstructures and Electrochemical Performances of La0.6Gd0.2Mg0.2Ni3.0Co0.5-xAlx (x=0-0.5) Hydrogen Storage Alloys as Negative Electrodes for Nickel/Metal Hydride Secondary Batteries[J]. J. Power Sources, 2014, 270: 21-27.

[4]

Wang ZM, Zhou HY, Gu ZF, et al. Preparation of LaMgNi4 Alloy and Its Electrode Properties[J]. J. Alloys Compd., 2004, 377(1-2): L7-L9.

[5]

Kohno T, Yoshida H, Kawashma F, et al. Hydrogen Storage Properties of New Ternary System Alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14[J]. J. Alloys Compd., 2000, 311(2): L5-L7.

[6]

Kadir K, Noreus D, Yamashita I. Structure Determination of AMgNi4 (where A=Ca, La, Ce, Pr, Nd and Y) in the AuBe5 Type Structure[J]. J. Alloys Compd., 2002, 345(1-2): 140-143.

[7]

Liu YF, Cao YH, Huang L, et al. Rare Earth-Mg-Ni-based Hydrogen Storage Alloys as Negative Electrode Materials for Ni/MH Batteries[J]. J. Alloys Compd., 2011, 509(3): 675-686.

[8]

Liu YF, Pan HG, Gao MX, et al. Advanced Hydrogen Storage Alloys for Ni/MH Rechargeable Batteries[J]. J. Mater. Chem., 2011, 21(13): 4743-4755.

[9]

Teresiak A, Uhlemann M, Thomas J, et al. Influence of Co and Pd on the Formation of Nanostructured LaMg2Ni and Its Hydrogen Reactivity[J] J. Alloys Compd., 2014, 582: 647-658.

[10]

Tian X, Yun G, Wang HY, et al. Preparation and Electrochemical Properties of La-Mg-Ni-based La0.75Mg0.25Ni3.3Co0.5 Multiphase Hydrogen Storage Alloy as Negative Material of Ni/MH Battery[J]. Int. J. Hydrogen Energy, 2014, 39(16): 8474-8481.

[11]

Yang T, Yuan ZM, Bu WG, et al. Effect of Elemental Substitution on the Structure and Hydrogen Storage Properties of LaMgNi4 Alloy[J]. Mater. Des., 2016, 93: 46-52.

[12]

Yang T, Zhai T T, Yuan ZM, et al. Hydrogen Storage Properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) Alloys[J]. J. Alloys Compd., 2014, 617: 29-33.

[13]

Zhai TT, Yang T, Yuan Z M, et al. An Investigation on Electrochemical and Gaseous Hydrogen Storage Performances of As-cast La1-xPrxMgNi3.6Co0.4 (x = 0–0.4) Alloys[J]. Int. J. Hydrogen Energy, 2014, 39(26): 14282-14287.

[14]

Zhai TT, Yang T, Yuan ZM, et al. Influences of Hydrogen-induced Amorphization and Annealing Treatment on Gaseous Hydrogen Storage Properties of La1-xPrxMgNi3.6Co0.4 (x = 0–0.4) Alloys[J]. J. Alloys Compd., 2015, 639: 15-20.

[15]

Zhang YH, Cai Y, Zhao C, et al. Electrochemical Performances of the As-melt La0.75-xMxMg0.25Ni3.2Co0.2Al0.1 (M=Pr, Zr; x = 0, 0.2) Alloys Applied to Ni/metal Hydride (MH) Battery[J]. Int. J. Hydrogen Energy, 2012, 37(19): 14590-14597.

[16]

Zhang YH, Li BW, Ren HP, et al. Investigation on Structures and Electrochemical Characteristics of the As-cast and Quenched La0.5Ce0.2Mg0.3 Co0.4Ni2.6-xMnx (x = 0–0.4) Electrode Alloys[J]. J. Alloys Compd., 2008, 461(1-2): 591-597.

[17]

Teresiak A, Gebert A, Savyak M, et al. In Situ High Temperature XRD Studies of the Thermal Behaviour of the Rapidly Quenched Mg77Ni18Y5 Alloy Under Hydrogen[J]. J. Alloys Compd., 2005, 398(1-2): 156-164.

[18]

Zhang YH, Zhai TT, Yang T, et al. Electrochemical Hydrogen-storage Performance of Mg20-xYxNi10 (x=0-4) Alloys Prepared by Mechanical Milling[J]. J. Appl. Electrochem., 2015, 45: 931-941.

[19]

Wu MS, Wu HR, Wang YY, et al. Surface Treatment for Hydrogen Storage Alloy of Nickel/Metal Hydride Battery[J]. J. Alloys Compd., 2000, 302(1-2): 248-257.

[20]

Lai WH, Yu CZ. Research Survey of Improving Discharge Voltage Platform for Ni-MH Battery[J]. Battery Bimonthly, 1996, 26(4): 189-191.

[21]

Wu Y, Han W, Zhou SX, et al. Microstructure and Hydrogenation Behavior of Ball-milled and Melt-spun Mg-10Ni-2Mm Alloys[J]. J. Alloys Compd., 2008, 466(1-2): 176-181.

[22]

Orimo S, Fujii H. Materials Science of Mg-Ni-based New Hydrides[J]. Appl. Phys. A, 2001, 72(2): 167-186.

[23]

Zhao XY, Ding Y, Ma LQ, et al. Electrochemical Properties of Mm-Ni3.8Co0.75Mn0.4Al0.2 Hydrogen Storage Alloy Modified With Nanocrystalline Nickel[J]. Int. J. Hydrogen Energy, 2008, 33(22): 6727-6733.

[24]

Kuriyama N, Sakai T, Miyamura H, et al. Electrochemical Impedance and Deterioration Behavior of Metal Hydride Electrodes[J]. J. Alloys Compd., 1993, 202(1-2): 183-197.

[25]

Ding HL, Han SM, Liu Y, et al. Electrochemical Performance Studies on Cobalt and Nickel Electroplated La-Mg-Ni-based Hydrogen Storage Alloys[J]. Int. J. Hydrogen Energy, 2009, 34(23): 9402-9408.

[26]

Ruggeri S, Roué L, Huot J, et al. Properties of Mechanically Alloyed Mg-Ni-Ti Ternary Hydrogen Storage Alloys for Ni-MH Batteries[J]. J. Power Sources, 2002, 112(2): 547-56.

[27]

Zhang YH, Li BW, Ren HP, et al. Cycle Stabilities of the La0.7Mg0.3Ni2.55-xCo0.45Mx (M = Fe, Mn, Al; x = 0, 0.1) Electrode Alloys Prepared by Casting and Rapid Quenching[J]. J. Alloys Compd., 2008, 458(1-2): 340-345.

[28]

Zhang G, Popov BN, White RE. Electrochemical Determination Coefficient of Hydrogen through a LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution[J]. Electrochem. Soc., 1995, 142: 2695-2698.

[29]

Cui N, Luo JL. Electrochemical Study of Hydrogen Diffusion Behavior in Mg2Ni-type Hydrogen Storage Alloy Electrodes[J]. Int. J. Hydrogen Energy, 1999, 24(1): 37-42.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/