Degradation of Silicone Rubbers in Fenton’s Reagents

Fan Wu , Ke Li , Qinglian Zhang , Haining Zhang , Yanan Chen , Mu Pan , Xinping Yan

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 793 -796.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 793 -796. DOI: 10.1007/s11595-018-1895-8
Advanced Materials

Degradation of Silicone Rubbers in Fenton’s Reagents

Author information +
History +
PDF

Abstract

Gaskets are applied in PEMFCs (proton exchange membrane fuel cells) to keep reactant gases and liquid within their respective regions, which are of great significance for the both sealing and electrochemical performance of fuel cells during the long-term operation. In this study, the degradation of silicone rubbers, often selected as seals in PEMFCs, in Fenton’s reagents with different H2O2 concentrations was investigated. The changes in chemical properties, mechanical behavior and surface morphology of the samples were studied before and after exposure to the test environment over time. It is found that increasing H2O2 concentration will degrade the rubbers more severely. The experimental results elucidate the degradation mechanism of silicone rubbers in Fenton’s reagents and the influence of H2O2 in the degradation process.

Keywords

silicone rubbers / PEMFCs / seal / degradation / Fenton’s reagents

Cite this article

Download citation ▾
Fan Wu, Ke Li, Qinglian Zhang, Haining Zhang, Yanan Chen, Mu Pan, Xinping Yan. Degradation of Silicone Rubbers in Fenton’s Reagents. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(4): 793-796 DOI:10.1007/s11595-018-1895-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang YB, Su XJ, Hou GL, et al. Synthesis and Characterrization of Hafnium Carbide using the Method of Liquid Precursor Conversion[J]. Rare Met. Mater. Eng., 2008, 37(4): 729-732.

[2]

Basuli U, Jose J, Lee RH, et al. Properties and Degradation of the Gasket Component of a Proton Exchange Membrane Fuel Cell-A Review[J]. J. Nanosci. Nanotechno., 2012, 12(10): 7641-7657.

[3]

De Bruijn FA, Dam VAT, Janssen GJM. Review: Durability and Degradation Issues of PEM Fuel Cell Components[J]. Fuel Cells, 2008, 8(1): 3-22.

[4]

Graiver D, Farminer KW, Narayan R. A Review of the Fate and Effects of Silicones in the Environment[J]. J. Polym. Environ., 2003, 11(4): 129-136.

[5]

Curtin DE, Lousenberg RD, Henry TJ, et al. Advanced Materials for Improved PEMFC Performance and Life[J]. J. Power Sources, 2004, 131(1): 41-48.

[6]

Cui T, Lin CW, Chien CH, et al. Service Life Estimation of Liquid Silicone Rubber Seals in Polymer Electrolyte Membrane Fuel Cell Environment[J]. J. Power Sources, 2011, 196(3): 1216-1221.

[7]

Kim MS, Kim JH, Kim JK, et al. Life Time Prediction of Rubber Gasket for Fuel Cell through its Acid-aging Characteristics[J]. Macromol. Res., 2007, 15(4): 315-323.

[8]

Pehlivan S, Clarke J, Armour S. Comparison of Accelerated Aging of Silicone Rubber Gasket Material with Aging in a Fuel Cell Environment[J]. J. Appl. Polym. Sci., 2013, 129(3): 1446-1454.

[9]

Yao MQ, Wei YH, Hu LQ, et al. Fabrication of Nanometer Powders by the Sol-Gel Method[J]. Rare Met. Mater. Eng., 2002, 31(5): 325-329.

[10]

Li G, Tan JZ, Gong JM. Chemical Aging of the Silicone Rubber in a Simulated and three Accelerated Proton Exchange Membrane Fuel Cell Environments[J]. J. Power Sources, 2012, 217: 175-183.

[11]

Lin X, An YH, Wu YD, et al. Microindentation Test for Assessing the Mechanical Properties of Cartilaginous Tissues[J]. J. Biomed. Mater. Res. Part B: Appl. Biomater., 2007, 80(1): 25-31.

[12]

Li G, Tan JZ, Gong JM. Degradation of the Elastomeric Gasket Material in a Simulated and four Accelerated Proton Exchange Membrane Fuel Cell Environments[J]. J. Power Sources, 2012, 205: 244-251.

[13]

Lin CW, Chien CH, Tan JZ, et al. Chemical Degradation of five Elastomeric Seal Materials in a Simulated and an Accelerated PEM Fuel Cell Environment[J]. J. Power Sources, 2011, 196: 1955-1966.

[14]

Ye DH, Li YJ, Wang GJ, et al. Stress Effect of Membrane Electrode Frame on the Membrane Dry-wet Cycling in PEM Fuel Cell[J]. J. Wuhan Univ. Technol., 2012, 10: 1-4.

[15]

Ding GQ, Tang HQ, Luo ZP, et al. Water Distribution and Removal along the Flow Channel in Proton Exchange Membrane Fuel Cells[J]. J. Wuhan Univ. Technol., 2013, 2: 243-248.

[16]

Kim JK, Kim IH. Characteristics of Surface Wettability and Hydrophobicity and Recovery Ability of EPDM Rubber and Silicone Rubber for Polymer Insulators[J]. J. Appl. Polym. Sci., 2001, 79(12): 2251-2257.

[17]

Tan JZ, Chao YJ, Yang M, et al. Chemical and Mechanical Stability of a Silicone Gasket Material Exposed to PEM Fuel Cell Environment[J]. Int. J. Hydrogen Energy, 2011, 36: 1846-1852.

[18]

Tan JZ, Chao Y V, Zee JW, et al. Degradation of Elastomeric Gasket Materials in PEM Fuel Cells[J]. Mater. Sci. Eng. A, 2007, 445-446: 669-675.

[19]

Tan JZ, Chao YJ, Li XD, et al. Degradation of Silicone Rubber under Compression in a Simulated PEM Fuel Cell Environment[J]. J. Power Sources, 2007, 172: 782-789.

[20]

Tan JZ, Chao YJ, Li XD, et al. Microindentation Test for Assessing the Mechanical Properties of Silicone Rubber Exposed to a Simulated Polymerelectrolyte Membrane Fuel Cell Environment[J]. J. Fuel Cell Sci. Technol., 2009, 6: 171-179.

[21]

Tan JZ, Chao YJ, Yang M, et al. Degradation Characteristics of Elastomeric Gasket Materials in a Simulated PEM Fuel Cell Environment[J]. J. Mater. Eng. Perform., 2008, 17: 785-792.

[22]

Schulze M, Knori T, Schneider A, et al. Degradation of Sealings for PEFC Test Cells during Fuel Cell Operation[J]. J. Power Sources, 2004, 1-2: 222-9.

[23]

Feng J, Zhang QL, Tu ZK, et al. Degradation of Silicone Rubbers with Different Hardness in Various Aqueous Solutions[J]. Polym. Degrad. Stabil., 2014, 109: 122-128.

[24]

Vishal O, Mittal H, Russell K, et al. Is H2O2 Involved in the Membrane Degradation Mechanism in PEMFC[J]? Electrochem. Solid ST, 2006, 9: A299-A302.

[25]

Cheng C, Thomas F. Modeling of H2O2 Formation in PEMFCs[J]. Electrochim. Acta, 2009, 54: 3984-3995.

[26]

Shironita S, Sakai T, Umeda M. Nafion Thickness Dependence of H2O2 Yield during O2 Reduction at Nafion/Pt Microelectrode Studied by Scanning Electrochemical Microscopy[J]. Electrochim. Acta, 2013, 113: 773-778.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/