Enhanced Thermoelectric Performance of Non-equilibrium Synthesized Fe0.4Co3.6Sb12-xGe x Skutterudites via Randomly Distributed Multi-scaled Impurity Dots

Song Zhang , Xuan Hu , Meijun Yang , Hong Cheng , Rong Tu , Lianmeng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 772 -777.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (4) : 772 -777. DOI: 10.1007/s11595-018-1891-z
Advanced Materials

Enhanced Thermoelectric Performance of Non-equilibrium Synthesized Fe0.4Co3.6Sb12-xGe x Skutterudites via Randomly Distributed Multi-scaled Impurity Dots

Author information +
History +
PDF

Abstract

The p-type Ge doped Fe0.4Co3.6Sb12-xGe x skutterudites with multi-scaled impurity dots (500 nm-2 mm) were successfully prepared by using melt-quenching (MQ) and subsequent spark plasma sintering (SPS) technique. Compared with traditional method, the new technology significantly shortened the processing time from several days to less than 24 hours. The phase of impurity dots was demonstrated to be CoSb through analysis of X-ray diffraction (XRD) and energy-dispersive spectrum (EDS). Impurity dots were induced by Ge substitution of Sb in the non-equilibrium synthesized process. Due to the abandonment of the long reaction of annealing crystallization, a few of Ge atoms would fail to substitute Sb site of skutterudite in this non-equilibrium synthesized process, leading to that the multi-scaled impurity dots randomly distributed in the matrix of skutterudite Fe0.4Co3.6Sb12-xGe x. The combination of multi-scaled impurity dots scattering long wavelength heat-carrying phonons and the point defect scattering short and middle wavelength heat-carrying phonons dramatically made the 22.2% reduction of lattice thermal conductivity. As a result, compared with unsubstituted sample of Fe0.4Co3.6Sb12, the maximum ZT value was increased by 30.5%. Thus, the two marked features of this new synthesis process, the shortened preparation time and the enhanced thermoelectric performance, would make a promising commercial application in the future.

Keywords

multi-scaled impurity dots / Sb site substitution / p-type / thermoelectric transport properties

Cite this article

Download citation ▾
Song Zhang, Xuan Hu, Meijun Yang, Hong Cheng, Rong Tu, Lianmeng Zhang. Enhanced Thermoelectric Performance of Non-equilibrium Synthesized Fe0.4Co3.6Sb12-xGe x Skutterudites via Randomly Distributed Multi-scaled Impurity Dots. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(4): 772-777 DOI:10.1007/s11595-018-1891-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bell LE. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems[J]. Science., 2008, 321(5895): 1457-1461.

[2]

Sales BC, Mandrus D, Williams RK. Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials[J]. Science., 1996, 272(5266): 1325-1328.

[3]

Snyder GJ, Toberer ES. Complex Thermoelectric Materials[J]. Nat. Mater., 2008, 7(2): 105-114.

[4]

Zhang Q, He J, Zhu TJ, et al. High Figures of Merit and Natural Nanostructures in Mg2Si0.4Sn0.6 Based Thermoelectric Materials[J]. Appl. Phys. Lett., 2008, 93(10): 102109-1–3.

[5]

Nolas GS, Morelli DT, Tritt TM. Skutterudites: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications[J]. Annu. Rev. Mater. Sci., 1999, 29(1): 89-116.

[6]

Morelli DT, Meisner GP. Low Temperature Properties of the Filled Skutterudite CeFe4Sb12[J]. J. Appl. Phys., 1995, 77(8): 3777-3780.

[7]

Nolas GS, Cohn JL, Slack GA. Effect of Partial Void Filling on the Lattice Thermal Conductivity of Skutterudites[J]. Phys. Rev. B., 1998, 58(1): 164-170.

[8]

Morelli D, Meisner G, Chen B, et al. Cerium Filling and Doping of Cobalt Triantimonide[J]. Phys. Rev. B., 1997, 56(12): 7376-7383.

[9]

Nolas GS, Kaeser M, Littleton RT, et al. High Figure of Merit in Partially Filled Ytterbium Skutterudite Materials[J]. Appl. Phys. Lett., 2000, 77(12): 1855-1857.

[10]

Zhai PC, Zhao WY, Li Y, et al. Nanostructures and Enhanced Thermoelectric Properties in Ce-filled Skutterudite Bulk Materials[J]. Appl. Phys. Lett., 2006, 89(3): 1-4.

[11]

Chen LD, Kawahara T, Tang XF, et al. Anomalous Barium Filling Fraction and n-type Thermoelectric Performance of BayCo4Sb12[J]. J. Appl. Phys., 2001, 90(4): 1864-1868.

[12]

Puyet M, Dauscher A, Lenoir B, et al. Beneficial Effect of Ni Substitution on the Thermoelectric Properties in Partially Filled CayCo4-xNixSb12 Skutterudites[J]. J. Appl. Phys., 2005, 97(8): 083712-1–4.

[13]

Zhao XY, Shi X, Chen LD, et al. Synthesis and Thermoelectric Properties of Sr-filled Skutterudite SryCo4Sb12[J]. J. Appl. Phys., 2006, 99(5): 053711-1–4.

[14]

Zhao LD, Wu HJ, Hao SQ, et al. All-scale Hierarchical Thermoelectrics: MgTe in PbTe Facilitates Valence Band Convergence and Suppresses Bipolar Thermal Transport for High Performance[J]. Energy Environ. Sci., 2013, 6(11): 3346-3355.

[15]

Koirala M, Zhao H, Pokharel M, et al. Thermoelectric Property Enhancement by Cu Nanoparticles in Nanostructured FeSb2[J]. Appl. Phys. Lett., 2013, 102(21): 2011-2016.

[16]

Tan G, Chi H, Liu W, et al. Toward High Thermoelectric Performance p-type FeSb2.2Te0.8 via in situ Formation of InSb Nanoinclusions[J]. J. Mater. Chem. C, 2015, 3(32): 8372-8380.

[17]

Zebarjadi M, Yang J, Lukas K, et al. Role of Phonon Dispersion in Studying Phonon Mean Free Paths in Skutterudites[J]. J. Appl. Phys., 2012, 112(4): 044305-1–7.

[18]

Biswas K, He JQ, Blum ID, et al. High-performance Bulk Thermoelectrics with All-scale Hierarchical Architectures[J]. Nature, 2012, 489(7416): 414-418.

[19]

Shi X, Yang JJ, Salvador JR, et al. Multiple-filled Skutterudites: High Thermoelectric Figure of Merit Through Separately Optimizing Electrical and Thermal Transports[J]. J. Am. Chem. Soc., 2011, 133(20): 7837-7846.

[20]

Su X, Li H, Yan Y, et al. The Role of Ga in Ba0.30GaxCo4Sb12+x Filled Skutterudites[J]. J. Mater. Chem., 2012, 22(31): 15628-15634.

[21]

Tan G, Wang S, Tang X, et al. Preparation and Thermoelectric Properties of Ga-substituted p-type Fully Filled Skutterudites CeFe4-xGaxSb12[J]. J. Solid State Chem., 2012, 196(8): 203-208.

[22]

Liu WS, Zhang BP, Zhao LD, et al. Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb[J]. Chem. Mater., 2008, 20(24): 7526-7531.

[23]

Wu T, Jiang W, Li X, et al. Effects of Ge Doping on the Thermoelectric Properties of TiCoSb-based p-type Half-Heusler Compounds[J]. J. Alloys Compd., 2009, 467(1): 590-594.

[24]

Duan B, Zhai P, Liu L, et al. Effects of Se Substitution on the Thermoelectric Performance of n-type Co4Sb11.3Te0.7-xSex Skutterudites[J]. Mater. Res. Bull., 2012, 47(7): 1670-1673.

[25]

Yu J, Zhao W, Wei P, et al. Effects of Excess Sb on Thermoelectric Properties of Barium and Indium Double-filled Iron-based p-type Skutterudite Materials[J]. J. Electron. Mater., 2012, 41(6): 1414-1420.

[26]

Duan B, Zhai P, Liu L, et al. Effects of Double Substitution with Ge and Te on Thermoelectric Properties of a Skutterudite Compound[J]. J. Electron. Mater., 2010, 40(5): 932-936.

[27]

Peng J, Yang J, Zhang T, et al. Preparation and Characterization of Fe Substituted CoSb3 Skutterudite by Mechanical Alloying and Annealing[J]. J. Alloys Compd., 2004, 381(2): 313-316.

[28]

Holland TJB, Redfern SAT, Street D. Unit Cell Refinement from Powder Diffraction Data: the Use of Regression Diagnostics[J]. Mineral. Mag., 1997, 61(6): 65-77.

[29]

Su X, Li H, Wang G, et al. Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25-xTex(x = 0.125-0.20) with in situ Nanostructure[J]. Chem. Mater., 2011, 23(10): 2948-2955.

[30]

Mallik RC, Mueller E, Kim IH. Thermoelectric Properties of Indium Filled and Germanium Doped Co4Sb12 Skutterudites[J]. J. Appl. Phys., 2012, 111(2): 023708-1–8.

[31]

Yu J, Zhao W, Zhou H, et al. Rapid Preparation and Thermoelectric Properties of Ba and In Double-filled p-type Skutterudite Bulk Materials[J]. Scr. Mater., 2013, 68(8): 643-646.

[32]

Tan G, Zheng Y, Tang X. High Thermoelectric Performance of Nonequilibrium Synthesized CeFe4Sb12 Composite with Multi-scaled Nanostructures[J]. Appl. Phys. Lett., 2013, 103(18): 183904-1–5.

[33]

Sales BC, Mandrus D, Chakoumakos BC, et al. Filled Skutterudite Antimonides: Electron Crystals and Phonon Glasses[J]. Phys. Rev. B, 1997, 56(23): 15081-15089.

[34]

Bergman DJ, Levy O. Thermoelectric Properties of a Composite Medium[J]. J. Appl. Phys., 1991, 70(11): 6821-6833.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/