Synthesis and Characterization of Rectorite/ZnO/TiO2 Composites and Their Properties of Adsorption and Photocatalysis for the Removal of Methylene Blue Dye

Huanhuan Wang , Peijiang Zhou , Jia Wang , Yifei Wang , Junchong Wei , Hongju Zhan , Rui Guo , Yali Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 729 -735.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 729 -735. DOI: 10.1007/s11595-018-1885-x
Article

Synthesis and Characterization of Rectorite/ZnO/TiO2 Composites and Their Properties of Adsorption and Photocatalysis for the Removal of Methylene Blue Dye

Author information +
History +
PDF

Abstract

As efficient water treatment agents, a novel series of rectorite-based ZnO and TiO2 hybrid composites (REC/ZnO/TiO2) were synthesized and characterized in this study. Effects of experimental parameters including TiO2 mass ratio, solution pH and catalyst dosage on the removal of methyl blue (MB) were also conducted. The presence of a little mass ratio (2%-6%) of TiO2 highly promoted the photoactivity of REC/ZnO/TiO2 in removal of MB dye from aqueous solution, in which ZnO and REC played a role of photocatalyst and adsorbent. The promotion effects of TiO2 may result from the accelerated separation of electron-hole on ZnO. The observed kinetic constant for the degradation of MB over REC/ZnO and REC/ZnO/TiO2 were 0.015 and 0.038 min-1, respectively. The degradation kinetics of MB dye, which followed the Langmuir–Hinshelwood model, had a reaction constant of 0.17 mg/(L·min). The decrease of removal ratio of MB after five repetitive experiments was small, indicating REC/ZnO/TiO2 has great potential as an effective and stable catalyst.

Keywords

TiO2 / ZnO / methylene blue / photocatalysis / rectorite

Cite this article

Download citation ▾
Huanhuan Wang, Peijiang Zhou, Jia Wang, Yifei Wang, Junchong Wei, Hongju Zhan, Rui Guo, Yali Zhang. Synthesis and Characterization of Rectorite/ZnO/TiO2 Composites and Their Properties of Adsorption and Photocatalysis for the Removal of Methylene Blue Dye. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(3): 729-735 DOI:10.1007/s11595-018-1885-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gupta V K Suhas. Application of Low-Cost Adsorbents for Dye Removal A Review[J]. J. Environ. Manage., 2009, 90(8): 2

[2]

Pearce C I, Lloyd J R, Guthrie J T. The Removal of Colour from Textile Wastewater using Whole Bacterial Cells: A Review[J]. Dyes. Pigments, 2003, 58(3): 179-196.

[3]

Wang J, Bai R. Formic Acid Enhanced Effective Degradation of Methyl Orange Dye in Aqueous Solutions under UV-Vis Irradiation[J]. Water Res., 2016, 101: 103-113.

[4]

Kudo A, Miseki Y. Heterogeneous Photocatalyst Materials For Water Splitting[J]. Chem. Soc. Rev., 2009, 38: 253-278.

[5]

Lee K M, Lai C W, Ngai K S, et al. Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review[J]. Water Res., 2016, 88: 428-448.

[6]

Zhang X, Wang Y, Liu B, et al. Heterostructures Construction on TiO2 Nanobelts: A Powerful Tool for Building High-Performance Photocatalysts[J]. Appl. Catal. B-Environ., 2017, 202: 620-641.

[7]

Tan C, Cao X, Wu XJ, et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials[J]. Chem. Rev., 2017, 117(9): 6225-6331.

[8]

Pirhashemi M, Habibi-Yangjeh A. Ultrasonic-Assisted Preparation of Plasmonic ZnO/Ag/Ag2WO4 Nanocomposites with High Visible-Light Photocatalytic Performance for Degradation of Organic Pollutants[J]. J. Colloid Interface Sci., 2017, 491: 216-229.

[9]

Karunakaran C, Dhanalakshmi R. Photocatalytic Performance of Particulate Semiconductors under Natural Sunshine Oxidation of Carboxylic Acids[J]. Sol. Energ. Mater. Sol. C., 2008, 92(5): 588-593.

[10]

Madhavan J, Muthuraaman B, Murugesan S, et al. Peroxomonosulphate, an Efficient Oxidant for The Photocatalysed Degradation of A Textile Dye, Acid Red 88[J]. Sol. Energ. Mater. Sol. C, 2006, 90(13): 1875-1887.

[11]

Chen Z, Shuai L, Zheng B, et al. Synthesis of Zinc Oxide Nanoparticles with Good Photocatalytic Activities under Stabilization of Bovine Serum Albumin[J]. J. Wuhan. Univ. Technol., 2017, 32(5): 1061-1066.

[12]

Zhang G, Lan Z A, Wang X. Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2016, 55(51): 15712-15727.

[13]

Zhang L, Li J, Chen Z, et al. Preparation of Fenton Reagent with H2O2 Generated by Solar Light-Illuminated Nano-Cu2O/MWNTs Composites[J]. Appl. Catal. A-Gen., 2006, 299(1): 292-297.

[14]

Nagaraju G, Manjunath K, Ravishankar T N, et al. Ionic liquid-Assisted Hydrothermal Synthesis of TiO2 Nanoparticles and Its Application in Photocatalysis[J]. J. Mater. Sci., 2013, 48(24): 8420-8426.

[15]

Saikia L, Bhuyan D, Saikia M, et al. Photocatalytic Performance of ZnO Nanomaterials for Self Sensitized Degradation of Malachite Green Dye under Solar Light[J]. Appl. Catal. A-Gen., 2015, 490: 42-49.

[16]

Li G L, Ma P, Zhang Y F, et al. Synthesis of Cu2O Nanowire Mesocrystals using PTCDA as a Modifier and Their Superior Peroxidase-Like Activity[J]. J. Mater. Sci., 2016, 51(8): 3979-3988.

[17]

Sarkar A K, Saha A, Tarafder A, et al. Efficient Removal of Toxic Dyes Via Simultaneous Adsorption and Solar Light Driven Photodegradation using Recyclable Functionalized Amylopectin-TiO2-Au Nanocomposite[J]. ACS Sustainable Chem. Eng., 2016, 4(3): 1679-1688.

[18]

Fujishima A, Zhang X, Tryk D. TiO2 Photocatalysis and Related Surface Phenomena[J]. Surf. Sci. Rep., 2008, 63(12): 515-582.

[19]

Reddy K R, Karthik K V, Prasad S B B, et al. Enhanced Photocatalytic Activity of Nanostructured Titanium Dioxide/Polyaniline Hybrid Photocatalysts[J]. Polyhedron, 2016, 120: 169-174.

[20]

Podporska-Carroll J, Myles A, Quilty B, et al. Antibacterial Properties of F-Doped ZnO Visible Light Photocatalyst[J]. J. Hazard. Mater., 2017, 324: 39-47.

[21]

Yi S H, Choi S K, Jang J M, et al. Low-Temperature Growth of ZnO Nanorods by Chemical Bath Deposition[J]. J. Colloid Interface Sci., 2007, 313(2): 705-710.

[22]

Yang T, Peng J, Zheng Y, et al. Enhanced Photocatalytic Ozonation Degradation of Organic Pollutants by ZnO Modified TiO2 Nanocomposites[J]. Appl. Catal. B-Environ., 2017, 221: 223-234.

[23]

Ramírez-Ortega D, Meléndez AM, Acevedo-Peña P, et al. Semiconducting Properties of ZnO/TiO2 Composites by Electrochemical Measurements and Their Relationship with Photocatalytic Activity[J]. Electrochim. Acta, 2014, 140(27): 541-549.

[24]

Cheng C, Amini A, Zhu C, et al. Enhanced Photocatalytic Performance of TiO2-ZnO Hybrid Nanostructures[J]. Sci. Rep., 2014, 4(8): 4181

[25]

Sethi D, Sakthivel R. ZnO/TiO2 Composites for Photocatalytic Inactivation of Escherichia Coli[J]. J. Photochem. Photobiol. B, 2017, 168: 117-123.

[26]

Jo W K, Clament S S N. Enhanced Visible Light-Driven Photocatalytic Performance of ZnO-g-C3N4 Coupled with Graphene Oxide as a Novel Ternary Nanocomposite[J]. J. Hazard. Mater., 2015, 299: 462-470.

[27]

Gu N, Gao J, Wang K, et al. ZnO–Montmorillonite as Photocatalyst and Flocculant for Inhibition of Cyanobacterial Bloom[J]. Water Air. Soil Poll., 2015, 226(5): 1-12.

[28]

Kolodziejczak-Radzimska A, Jesionowski T. Zinc Oxide-From Synthesis to Application: A Review[J]. Materials, 2014, 7(4): 2833-2881.

[29]

Feng X, Guo H, Patel K, et al. High Performance, Recoverable Fe3O4-ZnO Nanoparticles for Enhanced Photocatalytic Degradation of Phenol[J]. Chem. Eng. J., 2014, 244(10): 327-334.

[30]

Ökte AN, Karamanis D. A Novel Photoresponsive ZnO-Flyash Nanocomposite for Environmental and Energy Applications[J]. Appl. Catal. B-Environ., 2013, 142-143(10): 538-552.

[31]

Ahmad M, Ahmed E, Hong ZL, et al. A Facile One-Step Approach to Synthesizing ZnO/Graphene Composites for Enhanced Degradation of Methylene Blue under Visible Light[J]. Appl. Surf. Sci., 2013, 274(1): 273-281.

[32]

Wang C, Shi H, Li Y. Preparation of Bentonite Supported Nano Titanium Dioxide Photocatalysts by Electrostatic Self-Assembly Method[J]. J. Wuhan. Univ. Technol., 2012, 27(4): 603-607.

[33]

Bailey S W, Brindley G W, Kodama H, et al. Report of the Clay-Minerals-Society Nomenclature Committee for 1980–1981 Nomenclature for Regular Interstratifications[J]. Clay. Clay. Miner., 1982, 30(1): 76-78.

[34]

Guo Y, Zhang G, Gan H. Synthesis, Characterization and Visible Light Photocatalytic Properties of Bi2WO6/Rectorite Composites[J]. J. Colloid Interface Sci., 2012, 369(1): 323-329.

[35]

Lu Y, Chang P R, Zheng P, et al. Rectorite–TiO2–Fe3O4 Composites: Assembly, Characterization, Adsorption and Photodegradation[J]. Chem. Eng. J., 2014, 255(255): 49-54.

[36]

Wu S, Fang J, Xu W, et al. Bismuth-Modified Rectorite with High Visible Light Photocatalytic Activity[J]. J. Mol. Catal. A-chem., 2013, 373(3): 114-120.

[37]

Zhang Y, Guo Y, Zhang G, et al. Stable TiO2/Rectorite: Preparation, Characterization and Photocatalytic Activity[J]. Appl. Clay. Sci., 2011, 51(3): 335-340.

[38]

Hanlie H, Xiaoling Z, Miao W, et al. Morphological Characteristics of (K, Na)-Rectorite from Zhongxiang Rectorite Deposit, Hubei, Central China[J]. J. China Univ. Geosci., 2008, 19(1): 38-46.

[39]

Chen Y, Zhang X, Mao L, et al. Dependence of Kinetics and Pathway of Acetaminophen Photocatalytic Degradation on Irradiation Photon Energy and TiO2 Crystalline[J]. Chem. Eng. J., 2017, 330: 1091-1099.

[40]

Sakurai K, Mizusawa M. X-ray Diffraction Imaging of Anatase and Rutile[J]. Anal. Chem., 2010, 82(9): 3519-3352.

[41]

Guo Y, Liu Y. Adsorption Properties of Methylene Blue from Aqueous Solution onto Thermal Modified Rectorite[J]. J. Disper. Sci. Technol., 2014, 35(9): 1351-1359.

[42]

Zhang G, Liu G, Guo Y. Adsorption of Methylene Blue from Aqueous Solution onto Hydrochloric Acid-Modified Rectorite[J]. J. Wuhan. Univ. Technol., 2011, 26(5): 817-822.

[43]

Martha S, Reddy KH, Parida KM. Fabrication of In2O3 Modified ZnO for Enhancing Stability, Optical Behaviour, Electronic Properties and Photocatalytic Activity for Hydrogen Production under Visible Light[J]. J. Mater. Chem. A, 2014, 2(10): 3621-3631.

[44]

Wu ZW, Li Y G, Gao L J, et al. Synthesis of Na-doped ZnO Hollow Spheres with Improved Photocatalytic Activity for Hydrogen Production[J]. Dalton. Trans., 2016, 45(27): 11145-11149.

[45]

Habibi M H, Hassanzadeh A, Mahdavi S. The Effect of Operational Parameters on the Photocatalytic Degradation of Three Textile Azo Dyes in Aqueous TiO2 Suspensions[J]. J. Photochem. Photobiol. A, 2005, 172(1): 89-96.

[46]

Gaya U I, Abdullah A H. Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems[J]. J. Photochem. Photobiol. C, 2008, 9(1): 1-12.

[47]

Fujishima A, Zhang X, Tryk D A. TiO2 Photocatalysis and Related Surface Phenomena[J]. Surf. Sci. Rep., 2008, 63(12): 515-582.

[48]

Oliveira L C A, Gonçalves M, Guerreiro M C, et al. A New Catalyst Material Based on Niobia/Iron Oxide Composite on the Oxidation of Organic Contaminants in Water Via Heterogeneous Fenton Mechanisms[J]. Appl. Catal. A-Gen., 2007, 316(1): 117-124.

[49]

Shirafuji T, Nomura A, Hayashi Y, et al. Matrix-assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometric Analysis of Degradation Products After Treatment of Methylene Blue Aqueous Solution with Three-Dimensionally Integrated Microsolution Plasma[J]. Jpn. J. Appl. Phys., 2016, 55(1s): 01AH02

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/