Effect of Extrusion Ratio on the Microstructure and Mechanical Properties in an Al-Cu-Mg-Ag Alloy

Xiaofeng Xu , Yuguang Zhao , Ming Zhang , Yuheng Ning , Xudong Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 710 -714.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 710 -714. DOI: 10.1007/s11595-018-1882-0
Article

Effect of Extrusion Ratio on the Microstructure and Mechanical Properties in an Al-Cu-Mg-Ag Alloy

Author information +
History +
PDF

Abstract

In order to examine the effect of extrusion ratio on the microstructure and mechanical behavior in Al-Cu-Mg-Ag alloy, the Al-6.3Cu-0.48Mg-0.4Ag alloy was subjected to extruding with different extrusion ratios of 17, 30 and 67. The results indicate that the grains are refined and the strength is improved effectively with increasing extrusion ratio. However, further investigation shows that the extrusion ratio of 30 is more effective than the lower extrusion ratio (17) and the higher extrusion ratio (67) to refine the grains in the T6-temper alloy. Moreover, the sample with an extrusion ratio of 30 obtains more precipitates and superior mechanical properties after T6 treatment. This study supports the idea that there exists a critical extrusion ratio for grain refinement and improvement of mechanical properties for the T6-temper alloy. Recrystallization and precipitation during T6 treatment were introduced to explain the effects of extrusion ratio on the microstructure and mechanical properties of the Al-Cu-Mg-Ag alloys.

Keywords

Al alloy / extrusion ratio / grain refinement / precipitation / microstructure

Cite this article

Download citation ▾
Xiaofeng Xu, Yuguang Zhao, Ming Zhang, Yuheng Ning, Xudong Wang. Effect of Extrusion Ratio on the Microstructure and Mechanical Properties in an Al-Cu-Mg-Ag Alloy. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(3): 710-714 DOI:10.1007/s11595-018-1882-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hou Y H, Gu YX, Liu Z Y, et al. Modeling of Whole Process of Ageing Precipitation and Strengthening in Al-Cu-Mg-Ag Alloys with High Cu-to-Mg Mass Ratio[J]. Trans. Nonferrous Met. Soc. China, 2010, 20(5): 863-869.

[2]

Lumley R N, Morton A J, Polmear I J. Enhanced Creep Performance in An Al-Cu-Mg-Ag Alloy through Underageing[J]. Acta Mater., 2002, 50(14): 3597-3608.

[3]

Hutchinson C R, Fan X, Pennycook S J, et al. On the Origin of the High Coarsening Resistance of Omega Plates in Al-Cu-Mg-Ag Alloys[J]. Acta Mater., 2001, 49(14): 2827-2841.

[4]

Skrotzki B, Shiflet G, Starke E. On The Effect of Stress on Nucleation and Growth of Precipitates in an Al-Cu-Mg-Ag Alloy[J]. Metall. Mater. Trans. A, 1996, 27(11): 3431-3444.

[5]

Polmear I J, Pons G, Barbaux Y, et al. After Concorde: Evaluation of Creep Resistant Al-Cu-Mg-Ag Alloys[J]. Mater. Sci. Technol., 1999, 15(8): 861-868.

[6]

Estrin Y, Vinogradov A. Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science[J]. Acta Mater., 2013, 61(3): 782-817.

[7]

Orlov D, Raab G, Lamark T T, et al. Improvement of Mechanical Properties of Magnesium Alloy ZK60 by Integrated Extrusion and Equal Channel Angular Pressing[J]. Acta Mater., 2011, 59(1): 375-385.

[8]

Cheng S, Zhao Y H, Zhu Y T, et al. Optimizing the Strength and Ductility of Fine Structured 2024 Al Alloy by Nano-precipitation[J]. Acta Mater., 2007, 55(17): 5822-5832.

[9]

Zhao Y L, Yang Z Q, Zhang Z, et al. Double-peak Age Strengthening of Cold-worked 2024 Aluminum Alloy[J]. Acta Mater., 2013, 61(5): 1624-1638.

[10]

Kim J K, Jeong H G, Hong S I, et al. Effect of Aging Treatment on Heavily Deformed Microstructure of A 6061 Aluminum Alloy after Equal Channel Angular Pressing[J]. Scripta Mater., 2001, 45(8): 901-907.

[11]

Wang Z C, Prangnell P B. Microstructure Refinement and Mechanical Properties of Severely Deformed Al-Mg-Li Alloys[J]. Mater. Sci. Eng. A, 2002, 328(1): 87-97.

[12]

Shaeri M H, Salehi M T, Seyyedein S H, et al. Microstructure and Mechanical Properties of Al-7075 Alloy Processed by Equal Channel Angular Pressing Combined with Aging Treatment[J]. Mater. Des., 2014, 57: 250-257.

[13]

Liu X Y, Pan Q L, Zhang X L, et al. Effects of Stress-aging on The Microstructure and Properties of An Aging Forming Al-Cu-Mg-Ag Alloy[J]. Mater. Des., 2014, 58: 247-251.

[14]

Sha G, Wang Y B, Liao X Z, et al. Influence of Equal-channel Angular Pressing on Precipitation in an Al-Zn-Mg-Cu Alloy[J]. Acta Mater., 2009, 57(10): 3123-3132.

[15]

Barnett M R. A Rationale for the Strong Dependence of Mechanical Twinning on Grain Size[J]. Scripta Mater., 2008, 59(7): 696-698.

[16]

Rofman O V, Bate P S. Dynamic Grain Growth and Particle Coarsening in Al-3.5Cu[J]. Acta Mater., 2010, 58(7): 2527-2534.

[17]

Zhang G J, Liu G, Ding X D, et al. Experiment and Modeling Study of Aged Aluminium Alloys Strengthening Response[J]. Acta Metall. Sinica, 2003, 39(8): 803-808.

[18]

Liddicoat P V, Liao X Z, Zhao Y, et al. Nanostructural Hierarchy Increases the Strength of Aluminium Alloys[J]. Nat. Commun., 2010, 63(1): 1-6.

[19]

Hu T, Ma K, Topping T D, et al. Precipitation Phenomena in An Ultrafine-grained Al Alloy[J]. Acta Mater., 2013, 61: 2163-2178.

[20]

Ma K, Wen H, Hu T, et al. Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-strengthened Aluminum Alloy[J]. Acta Mater., 2014, 62: 141-155.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/