Effect of Coiling Temperature on Ti(C,N) Precipitation and Properties of Batch Annealed DC06EK Enamel Steel

Fei Xue , Futao Dong , Yaqiang Tian , Liansheng Chen , Linxiu Du , Xianghua Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 697 -702.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 697 -702. DOI: 10.1007/s11595-018-1880-2
Article

Effect of Coiling Temperature on Ti(C,N) Precipitation and Properties of Batch Annealed DC06EK Enamel Steel

Author information +
History +
PDF

Abstract

The effects of hot-strip coiling temperature on Ti(C,N) precipitation, texture and hydrogen permeation behavior in DC06EK enamel steel were investigated by TEM, EBSD test and electrochemical hydrogen permeation experiment. It was found that the Ti(C,N) particles in hot-strip coarsened with increasing coiling temperature, whereas after cold-rolling and annealing, the size difference of Ti(C,N) particles was lessened. The hot-strip coiling temperature has a significant impact on the recrystallized texture in the subsequent cold-rolled and annealed sheet. Hot-strip using high temperature (700 °C) coiling leads to strong {111} recrystallized texture in annealed sheet, with peak intensity 9.2. On the contrary, in annealed sheets using hot-strip coiling at 650 °C, their {111} recrystallized textures were weaker, which was also reflected in their r m values. Even though the hydrogen diffusion coefficient is slightly lower (7.76×10-5 mm2/s) in annealed sheet using low temperature coiling (600 °C), appropriately higher coiling temperature is more suitable for DC06EK enamel steel combining both good drawability and fish-scale resistance.

Keywords

enamel steel / coiling temperature / Ti(C,N) / γ-fiber texture / hydrogen diffusion

Cite this article

Download citation ▾
Fei Xue, Futao Dong, Yaqiang Tian, Liansheng Chen, Linxiu Du, Xianghua Liu. Effect of Coiling Temperature on Ti(C,N) Precipitation and Properties of Batch Annealed DC06EK Enamel Steel. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(3): 697-702 DOI:10.1007/s11595-018-1880-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Okuyamas T, Nishimoto A, Kurokawa T. New Type Cold Rolled Steel Sheet for Enameling Produced by the Continuous Casting Method[J]. Viterous Enameller, 1990, 41(3): 49-60.

[2]

Papp G, Geyer D, Giedenbacher G. Continuously Cast Steel Sheet for Enamelling and Technical Properties of Hot and Cold Rolled Sheet[J]. Viterous Enameller, 1990, 41(4): 71-81.

[3]

Pressouyre G M. A Classification of Hydrogen Traps in Steel[J]. Metal. Trans. A, 1979, 10(10): 1571-1573.

[4]

Choo W Y, Lee J Y. Thermal Analysis of Trapped Hydrogen in Pure Iron[J]. Metal. Trans. A, 1982, 13(1): 135-140.

[5]

Nagumo M, Nakamura M, Takai K. Hydrogen Thermal Desorption Relevant to Delayed-fracture Susceptibility of High-strength Steels[J]. Metal. Mater. Trans. A, 2001, 32(2): 339-347.

[6]

Valentini R, Solina A, Matera S, et al. Influence of Titanium and Carbon Contents on The Hydrogen Trapping of Microalloyed Steels[J]. Metal. Mater. Trans. A, 1996, 27(12): 3773-3780.

[7]

Otsuka T, Tanabe T. Hydrogen Diffusion and Trapping Process Around MnS Precipitates in a Fe Examined by Tritium Autoradiography[J]. J Alloy. Compd., 2007, 446-447: 655-659.

[8]

Dong F T, Du L X, Liu X H, et al. Optimization of Chemical Compositions in Low-carbon Al-killed Enamel Steel Produced by Ultra-fast Continuous Annealing[J]. Mater. Charact., 2013, 84: 81-87.

[9]

Zhang A W, Jiang Z Y, Wei D B, et al. Analysis of Fishscaling Resistance of Low Carbon Heavy Plate Steels[J]. J. Iron Steel Res. Int., 2014, 21(4): 469-475.

[10]

Subramanian S V, Prikryl M, Gaulin B D, et al. Effect of Precipitate Size and Dispersion on Lankford Values of Titanium Stabilized Interstitial-free Steels[J]. ISIJ Int., 1994, 34: 61-69.

[11]

Banerjee K, Verma A K, Venugopalan T. Improvement of Drawability of Titanium-Stabilized Interstitial-Free Steel by Optimization of Process Parameters and Texture[J]. Mater. Metall. Trans. A, 2008, 39: 1410-1425.

[12]

Dong F T, Du L X, Liu X H, et al. Effect of Ti(C, N) Precipitation on the Texture Evolution and Fish-scale Resistance of Ultra-low Carbon Ti-bearing Enamel Steel[J]. J. Iron Steel Res. Int., 2013, 20(4): 39-45.

[13]

Devanathan M A V, Stachurki Z. The Absorption and Diffusion of Hydrogen in Palladium[J]. Pro. Royal Soc. A, 1962, 270(1340): 90-102.

[14]

Nishimura R, Toba K, Yamakawa K. The Development of a Ceramic Sensor for the Prediction of Hydrogen Attack[J]. Corro. Sci., 1996, 38(4): 611-621.

[15]

Yoshinaga N, Ushioda K, Akamatsu S, et al. Precipitation Behavior of Sulfides in Ti-Added Ultra Low-Carbon Steels in Austenite[J]. ISIJ Int., 1994, 34(1): 24-32.

[16]

Ghosh P, Ghosh C, Ray R K, et al. Precipitation Behavior and Texture Formation at Different Stages of Processing in an Interstitial Free High Strength Steel[J]. Scripta Mater., 2008, 59(3): 276-278.

[17]

Asaoka T, Lapasset G, Aucouturier M, et al. Observation of Hydrogen Trapping in Fe-0.15 wt% Ti Alloy by High Resolution Autoradiography[J]. Corrosion, 1978, 34(2): 39-47.

[18]

Takahashi J, Kawakami K, Kobayashi Y, et al. The First Direct Observation of Hydrogen Trapping Sites in Ti(C,N) Precipitation-hardening Steel Through Atom Probe Tomography[J]. Scripta Mater., 2010, 63(3): 261-264.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/