Effect of Titanium Content on Microstructure and Wear Resistance of Hardfacing Alloy

Ke Yang , Yongfeng Jiang , Yefeng Bao

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 669 -673.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 669 -673. DOI: 10.1007/s11595-018-1876-y
Article

Effect of Titanium Content on Microstructure and Wear Resistance of Hardfacing Alloy

Author information +
History +
PDF

Abstract

The hardfacing alloys with different concentrations of titanium were deposited on carbon steel substrates by shielded metal arc welding, and the effect of titanium content on the microstructure characteristics of the hardfacing alloys was investigated. The wear resistance test of the hardfacing alloys was carried out by using a slurry rubber wheel abrasion test machine, and the wear behaviour was also studied. The results indicate that the addition of titanium can effectively promote the precipitation of the complex carbides of Nb and Ti due to the prior precipitation of titanium carbide which acts as nucleation sites for complex carbides. With the increase of titanium content, the wear resistance of the hardfacing alloys is increased gradually resulting from the refinement of microstructure and dispersive distribution of fine carbide precipitates. And the wear mechanism is mainly minimum plastic deformation with interrupted grooves due to the strengthening and protecting effects of carbide precipitates.

Keywords

hardfacing alloy / carbides / titanium / microstructure / wear resistance

Cite this article

Download citation ▾
Ke Yang, Yongfeng Jiang, Yefeng Bao. Effect of Titanium Content on Microstructure and Wear Resistance of Hardfacing Alloy. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(3): 669-673 DOI:10.1007/s11595-018-1876-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan Y L, Li Z G. Microstructure and Wear Performance of High Volume Fraction Carbide M7C3 Reinforced Fe-based Composite Coating Fabricated by Plasma Transferred Arc Welding[J]. J. Wuhan Univ. Technol.-Mater. Sci. Edit., 2014, 29(05): 1028-1035.

[2]

Pradeep G R C, Ramesh A D, Prasad B. A Review Paper on Hardfacing Processes and Materials[J]. Int. J. Eng. Sci. Technol., 2010, 2(11): 6507-6510.

[3]

Puli R J, Ram G D. Microstructures and Properties of Friction Surfaced Coatings in AISI 440C Martensitic Stainless Steel[J]. Surf. Coat. Technol., 2012, 207: 310-318.

[4]

Lo K H, Shek C H, Lai J K L. Recent Developments in Stainless Steels[J]. Mater. Sci. Eng. R, 2009, 65(4): 39-104.

[5]

Yang K, Zhang Z X, Hu W Q, et al. A New Type of Submerged-arc Flux-cored Wire Used for Hardfacing Continuous Casting Rolls[J]. J. Iron Steel Res. Int., 2011, 18(11): 74-79.

[6]

Kotecki D J, Ogborn J S. Abrasion Resistance of Iron-based Hardfacing Alloys[J]. Weld. J., 1995, 74(8): 269-278.

[7]

Wang X H, Han F, Liu X M, et al. Microstructure and Wear Properties of the Fe-Ti-V-Mo-C Hardfacing Alloy[J]. Wear, 2008, 265(5-6): 583-589.

[8]

Zhang Y B, Ren D Y. Distribution of Strong Carbide Forming Elements in Hardfacing Weld Metal[J]. Mater. Sci. Technol., 2003, 19(8): 1029-1032.

[9]

Zhang Y B, Ren D Y. Effect of Strong Carbide Forming Elements in Hardfacing Weld Metal[J]. J. Univ. Sci. Technol. Beijing, 2004, 11(1): 71-74.

[10]

Yang K, Xie X, Bao Y F, et al. Effect of Niobium and Titanium Carbonitride Precipitates on the High-temperature Wear Behaviour of Hardfacing Alloy[J]. Tribol., 2010, 30(4): 333-337.

[11]

Wei S Z, Liu Y, Zhang G S, et al. Microstructure and Wear Resistance of Fe-Cr-C Hardfacing Alloy Reinforced by Titanium Carbonitride[J]. Tribol. Trans., 2015, 58(4): 745-749.

[12]

Hsieh C C, Liu Y C, Wang J S, et al. Microstructural Evolution with Various Ti Contents in Fe-based Hardfacing Alloys Using A GTAW Technique[J]. Metal. Mater. Int., 2014, 20(4): 701-712.

[13]

Wang Q B, Li X Y. Effects of Nb, V, and W on Microstructure and Abrasion Resistance of Fe-Cr-C Hardfacing Alloys[J]. Weld. J., 2010, 89(7): 133-139.

[14]

Andrén H O, Karagöz S, Guangjun C, et al. Carbide Precipitation in Chromium Steels[J]. Surf. Sci., 1991, 246(1): 246-251.

[15]

Sourmail T. Precipitation in Creep Resistant Austenitic Stainless Steels[J]. Mater. Sci. Technol., 2001, 17(1): 1-14.

[16]

Yang K, Yang K, Bao Y F, et al. Formation Mechanism of Titanium and Niobium Carbides in Hardfacing Alloy[J]. Rare Met., 2017, 36(8): 640-644.

[17]

Yang K, Xie X, Zhou R, et al. Study of Carbonitride Precipitates in the Fe-Cr-Mn-N Hardfacing Alloy[J]. Mater. Sci. Forum, 2012, 704-705: 695-699.

[18]

Zhou Y F, Yang Y L, Li D, et al. Effect of Titanium Content on Microstructure and Wear Resistance of Fe-Cr-C Hardfacing Layers[J]. Weld. J., 2012, 91(8): 229-235.

[19]

Du W H, Du C, Wang H C, et al. Carbide Coating Preparation of Hot Forging Die by Plasma Processing[J]. J. Wuhan Univ. Technol.-Mater. Sci. Edit., 2012, 27(06): 1110-1114.

[20]

Yang K, Yu S F, Li Y B, et al. Effect of Carbonitride Precipitates on the Abrasive Wear Behaviour of Hardfacing Alloy[J]. Appl. Surf. Sci., 2008, 254(16): 5023-5027.

[21]

Wang X H, Zou Z D, Qu S Y, et al. Microstructure and Wear Properties of Fe-based Hardfacing Coating Reinforced by TiC Particles[J]. J. Mater. Process. Technol., 2005, 168(1): 89-94.

[22]

Yang K, Gao Y, Yang K, et al. Microstructure and Wear Resistance of Fe-Cr13-C-Nb Hardfacing Alloy with Ti Addition[J]. Wear, 2017, 376-377: 1091-1096.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/