Physico-chemical Characteristics of Wet-milled Ultrafine-granulated Phosphorus Slag as a Supplementary Cementitious Material

Xingyang He , Qing Ye , Jin Yang , Fei Dai , Ying Su , Yingbin Wang , Strnadel Bohumír

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 625 -633.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 625 -633. DOI: 10.1007/s11595-018-1870-4
Article

Physico-chemical Characteristics of Wet-milled Ultrafine-granulated Phosphorus Slag as a Supplementary Cementitious Material

Author information +
History +
PDF

Abstract

The phosphorus slag (PS) can be used as a supplementary cementitious material due to its potential hydrating activity. However, its usage has been limited by its adverse effects, including prolonged setting and lowered early-stage strength. In this study, we achieved ultrafine granulation of PS using wetmilling (reducing d 50 to as low as 2.02 μm) in order to increase its activity, and examined the physico-chemical properties of the resulting materials, including particle-size distribution, slurry pH, zeta potential, and activity index, as well as how their replacement level and granularity affect the setting time and mechanical performance of PS-cement mixture systems. The results suggested that as the granularity increases, there are significant boosts in the uniformity of particle sizes, slurry pH, and activity index, and the effects on cement paste, including setting times, and early- and late-stage strengths, are significantly mitigated. When d 50=2.02 μm, the slurry becomes strongly alkaline (pH=12.16) compared to the initial d 50=20.75 μm (pH=9.49), and the activity is increased by 73%; when used at 40% replacement, the PS-cement mixture system can reach a 28 d compressive strength of 93.2 MPa, 36% higher than that of the pure cement control group.

Keywords

wet-milling / phosphorus slag / ultrafine granulation / setting time / compressive strength

Cite this article

Download citation ▾
Xingyang He, Qing Ye, Jin Yang, Fei Dai, Ying Su, Yingbin Wang, Strnadel Bohumír. Physico-chemical Characteristics of Wet-milled Ultrafine-granulated Phosphorus Slag as a Supplementary Cementitious Material. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(3): 625-633 DOI:10.1007/s11595-018-1870-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun D, Zhou T, Wang A, et al. Research Status and Analysis of Cement-based Materials Mixed with Phosphorus Slag[J]. Materials Review, 2014, 28(13): 96-100.

[2]

Li D, Shen J, Mao L, et al. The Influence of Admixtures on the Properties of Phosphorous Slag Cement[J]. Cem. Concr. Res., 2000, 30(7): 1169-1173.

[3]

Li D, Shen J, Chen L, et al. The Influence of Fast-setting/Early-strength Agent on High Phosphorous Slag Content Cement[J]. Cem. Concr. Res., 2001, 31(1): 19-24.

[4]

Li D, Chen L, Xu Z, et al. A Blended Cement Containing Blast Furnace Slag and Phosphorous Slag[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2002, 17(2): 62-65.

[5]

Gao P, Lu X, Yang C, et al. Microstructure and Pore Structure of Concrete Mixed with Superfine Phosphorous Slag and Superplasticizer[J]. Constr. Build. Mater., 2008, 22(5): 837-840.

[6]

Chen X, Zeng L, Fang K. Anti-crack Performance of Phosphorus Slag Concrete[J]. Wuhan Univers. J. Nat. Sci., 2009, 14(1): 80-86.

[7]

Cheng L, Sheng G, Pi Y, et al. Effect of Retardation Mechanism of Phosphorous Slag on Portland Cement[J]. Bull. Chin. Ceram. Soc., 2005, 24(4): 40-44.

[8]

Zhang Z, Wang Q, Yang J. Hydration Mechanisms of Composite Binders Containing Phosphorus Slag at Different Temperatures[J]. Constr. Build. Mater., 2017, 147: 720-732.

[9]

Peng Y, Zhang J, Liu J, et al. Properties and Microstructure of Reactive Powder Concrete Having a High Content of Phosphorous Slag Powder and Silica Fume[J]. Constr. Build. Mater., 2015, 101: 482-487.

[10]

Allahverdi A, Mahinroosta M. Mechanical Activation of Chemically Activated High Phosphorous Slag Content Cement[J]. Powder Technol., 2013, 245: 182-188.

[11]

Allahverdi A, Pilehvar S, Mahinroosta M. Influence of Curing Conditions on the Mechanical and Physical Properties of Chemically-activated Phosphorous Slag Cement[J]. Powder Technol., 2016, 288: 132-139.

[12]

Allahverdi A, Abadi M A, Hossain KM, et al. Resistance of Chemically-activated High Phosphorous Slag Content Cement Against Freeze–thaw Cycles[J]. Cold Reg. Sci. Technol., 2014, 103: 107-114.

[13]

Collins FG, Sanjayan JG. Workability and Mechanical Properties of Alkali Activated Slag Concrete[J]. Cem. Concr. Res., 1999, 29(3): 455-458.

[14]

Lee W v, Deventer JSJ. The Effects of Inorganic Salt Contamination on the Strength and Durability of Geopolymers[J]. Colloid. Surface A, 2002, 211(2): 115-126.

[15]

Palacios M, Puertas F. Effect of Shrinkage-reducing Admixtures on the Properties of Alkali-activated Slag Mortars and Pastes[J]. Cem. Concr. Res., 2007, 37(5): 691-702.

[16]

Allahverdi A, Mahinroosta M. A Model for Prediction of Compressive Strength of Chemically Activated High Phosphorous Slag Content Cement[J]. Int. J. Civ. Eng., 2014, 12(4): 481-487.

[17]

Kotake N, Kuboki M, Kiya S, et al. Influence of Dry and Wet Grinding Conditions on Fineness and Shape of Particle Size Distribution of Product in a Ball Mill[J]. Adv. Powder Technol., 2011, 22(1): 86-92.

[18]

Nakach M, Authelin JR, Chamayou A, et al. Comparison of Various Milling Technologies for Grinding Pharmaceutical Powders[J]. Int. J. Miner. Process., 2004, 74: S173-S181.

[19]

Liu D, Fang K, Shi Y. Efeects of Phosphorous Slag on Hydration Properties and Pore Structure of Cement Paste[J]. J. Chin. Ceram. Soc., 2007, 35(1): 109-113.

[20]

Chen X, Fang K, Yang H, et al. Hydration Kinetics of Phosphorus Slag-cement Paste[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26(1): 142-146.

[21]

Derjaguin B, Landau L. Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes[J]. Prog. Surface Sci., 1993, 43(1): 30-59.

[22]

Verwey EJW, Overbeek JTG. Theory of the Stability of Lyophobic Colloids[J]. J. Colloid Sci., 1955, 10(2): 224-225.

[23]

Yoshioka K, Tazawa E, Kawai K, et al. Adsorption Characteristics of Superplasticizers on Cement Component Minerals[J]. Cem. Concr. Res., 2002, 32(10): 1507-1513.

[24]

Yukselen-Aksoy Y, Kaya A. Zeta Potential of Kaolinite in the Presence of Alkali, Alkaline Earth and Hydrolyzable Metal Ions[J]. Water Air Soil Poll., 2003, 145(1): 155-168.

[25]

Yukselen-Aksoy Y, Kaya A. A Study of Factors Affecting on the Zeta Potential of Kaolinite and Quartz Powder[J]. Environ. Earth Sci., 2011, 62(4): 697-705.

[26]

Kaya A, Yukselen-Aksoy Y. Zeta Potential of Clay Minerals and Quartz Contaminated by Heavy Metals[J]. Can. Geotech. J., 2005, 42(5): 1280-1289.

[27]

Wang S, Zhao Z. Hydration Features of New Phosphorous Slag Cement[J]. J. Chin. Ceram. Soc., 1990, 4: 379-384.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/